September 24 Math 2306 sec. 54 Fall 2021

Section 9: Method of Undetermined Coefficients

We were considering linear, constant coefficient, nonhomogeneous ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. e^{kx} k-constant
- sines and/or cosines, e.g. sin(kx) or cos(kx)
- and products and sums of the above kinds of functions

At first, we are looking at the y_p part. The general solution will be $y = y_c + y_p$.

Method of Undetermined Coefficients

This is a method for finding a particular solution to

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

by assuming that y_p is the same kind of function as g. We

- Determine what type of function g is,
- set up a guess for y_p of this form with unspecified constant coefficients,
- substitute our guess into the ODE,
- and then solve a system of equations for the coefficients by matching like terms.

Examples of Forms of y_p based on g (Trial Guesses)

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{0}y = g(x)$$
(e) $g(x) = xe^{3x}$

$$V_{p} = (A \times + B) e^{3x} = A \times e^{3x} + B e^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 Linear combo of $\cos(7x)$ and $\sin(7x)$
 $y_e = A \cos(7x) + B \sin(7x)$

3/26

Examples of Forms of y_p based on g (Trial Guesses)

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

Linear combos of $\sin(2x)$ and $Gs(2x)$ and $Gs(4x)$
 $Sm(4x)$ and $Gs(4x)$
 $Sp = A Sm(2x) + B Cos(2x) + C Sm(4x) + D Cos(4x)$

(h)
$$g(x) = x^2 \sin(3x)$$

Linear combs of $Z^{n\lambda}$ degree polynomial times
 $\sin(5x)$ and $\cos(3x)$

Examples of Forms of y_p based on g (Trial Guesses)

(i)
$$g(x) = e^x \cos(2x)$$
 Linear combo of $e^x \cos(2x)$ and $e^x \sin(2x)$

(j) $g(x) = xe^{-x}\sin(\pi x)$ Linear ambs of 1st degree poly times e^{-x} times $S_{in}(\pi x)$ and 1st degree poly times e^{-x} times $Cos(\pi x)$

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \cdots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x)$

$$y_{p_2}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_2(x),$

and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

We can find y_p as $y_{p_1} + y_{p_2}$ when
 y_{p_1} solves $y'' - 4y' + 4y = 6e^{-3x}$ $y_{1(x)} = 6e^{-3x}$
and y_{p_2} solves $y'' - 4y' + 4y = 16x^2$ $y_{2}(x) = 16x^2$
For $y_{2}(x) = 6e^{3x}$, $y_{p_1} = Ae^{-3x}$.
For $y_{2}(x) = 16x^2$, $y_{p_2} = Bx^2 + Cx + D$

A Glitch!

$$y'' - y' = 3e^{x}$$

Constant cost left + exponential right
 $g(x) = 3e^{x}$ constant times e^{x}
Let $y_{p} = Ae^{x}$. Substitute
 $y_{p}' = Ae^{x}$
 $y_{p}'' = Ae^{x}$
 $y_{p}'' - y_{p}' = 3e^{x}$

$$Ae^{x} - Ae^{x} = 3e^{x}$$

 $0 = 3e^{x}$

There is no A value for which this is true.

The guess yp won't work.

It has at least one like term

in common with the

complementary solution yc.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{p_i} will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{ρ_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where n is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the A, B, etc.

Case II Examples

Find the general solution of the ODE.

$$y''-2y'+y=-4e^x$$

Find
$$y_c$$
: y_c solves $y''-zy'+y=0$
the Charaderistic Poly is
$$m^2-2m+1=0$$

$$(m-1)^2=0 \Rightarrow m=1$$
 regreated
$$(m-1)^2=xe$$

$$y_1=e$$

$$y_2=xe$$

$$y_1=e$$

$$y_2=xe$$

Find yp:
$$g(x) = -4e^{x}$$

Like term you

 $yp = (Ae^{x})x = Axe^{x}$
 $yp = (Axe^{x})x = Axe^{x}$

We will finish this example next time.