September 24 Math 3260 sec. 53 Fall 2025

Chapter 3: Matrix Algebra
For m x n matrices A = [g;] and B = [b;] and scalar ¢, we defined
» the row and column vectors,
Row;(A) = (aj1, ajg, ..., ain), for i=1,....m

and Colj(A) = (a1j,aj,...,amj), for i=j,...,n
» matrix addition: A+ B = [a; + bj], and
» scalar multiplication cA = [ca;j].
Recall that the entries can be referenced using two notations,

aj = A)-
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3.3 Multiplication of Two Matrices

Suppose Ais an m x p matrix and B is a p x n matrix. Then the product
AB is the m x n matrix

AB = [(AB)(,‘J)}7 where (AB)(,’J) = ROW,‘(A) c CO|j(B).

If the number of columns of A does not match the number of rows of B,
then AB is not defined.

Transpose

Suppose A = [g;] is an m x n matrix. The matrix AT, called the trans-
pose of A, is the n x m matrix defined by

(AT)(i,j) = Agiy-

Row;(A) = Col;(A7) and Col;(A) = Row;(AT).
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Algebraic Properties

Let A, B, and C be matrices such that the appropriate sums and
products are defined, and let r be a scalar. Then

(i

A(B+ C)=AB+ ACand (A+B)C=AC + BC
(i) A(rB) = (rA)B = r(AB)

AT)T —A

(iii) (
v) (A+B)T = AT+ BT
v) (rA)T =rAT

i) (

) (AB)T = BTAT
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1o -2 1
Example: A= |2 -1 |, B= [ ]
3 3

Evaluate

T s 3
3. BAT - [': o '("X
2wt 3
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3.5 Multiplication of a Vector by a Matrix

The Product AX

Suppose A is an m x n matrix and let X be a vector in R". Then
the matrix-vector product AX is the vector in R™ given by

AX = (Row1(A) - X, Rowa(A) - X, . . ., Rowm(A) - X) .

> For AX to be defined, X must have the same number of entries as
A has columns.

» The vector AX has the same number of entries as A has rows.

Ax

mxn R"
|_‘,_I

Rm

September 23, 2025 5/45



Example

3 0 1 3
Find the product AXif A= | 1 —1 2 0 |andX=(1,-3,0,2).
0 2 0 -1
A j“ ) -
SO A - <@om(;\\.§ ) o, (R % Rou, B3
3
3 . ) q
@ ?OQI<A\"—))(-, (3'51 \1?7' LS‘?) O/‘L>':3+O“O‘P(o -

2 . - = \+3+0 - ’
Lown (A) X = (\,-\, z,0>: L\, 2 0,1) = 1+3-0v0 Y

O (A) %= {07,070 L1,3,0,20= 0LrOmes -3
QNZ ,

Ax= (a v -8
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Compatibility w/ Matrix Multiplication

., Xn) is a vector in R", and we define an n x 1 matrix X

If X = (x1, X, ..
via Col1(X) = X, i.e.,
X1
X2
X = ,
(/\ \/\ ‘,\4.\
Xn rh‘/'\,\ \J
\
then the matrix-vector product ¥
ROW1 (A) . CO|1 (X) ROW1 (A) - X
Rows(A) - Coly(X Rows(A) « X
Ax — 2(A) - Coly(X) _ 2(. )
Rowm(A) - Coly(X) Rowm(A) - X

is the m x 1 matrix such that Col;(AX) = AX.
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Alternate Formulation of Ax

an a2 ais

Let A= [
do1 do2 ao3

:| and X = <X1,X2,X3>.

Evaluate the product AX and find three vectors iy, U and Uz such that
AX is a linear combination xq Uy + XoUs + X3Us.

A% Ascs LRon, (A%, Bove (K) -5 )
ax3 &
‘?éj, - <o“m<\+ G2 %o+ O3 %3 DC‘LZ\Y-\* Qg Yo 482z X3>

= @,\X\)QZ\XO v (aaXe 0aYe) > (a3 %3, 0n %5

I\

X, <O\\\qu\>* Y, L&\.l)c\u_>+ X5 461‘3 ) 0\7.3>
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> a1 a2 a3
= ' Q A:
Qs (o, B [ ax ax a3

dz= 40\\1) aZ‘L

GJ = <0\"5,O\13>

-
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Alternate Formulation of AX

For X = (x4, Xo,...,Xxp) in R" and A and m x n matrix,
AX = X1 Col4 (A) + Xo C0|2(A) + -+ Xp Coln(A).

That is, AX is the vector in R™ that is the linear combination of
the columns of A with the entries of X as the weights.

Remark: We have two equivalent definitions for the product AxX. One
focuses on the role of the rows of A, and the other focuses on the role
of the columns of A.
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Example

Find the product AX using the second formulation, where

3 0 1 3
A=1|1 -1 2 0 |andX=(1,-3,0,2).
0 2 0 -1

[I'\i( : ﬁ.aaQ\(A\Jr X2 &_0-,_ (F\\“‘ Xz O‘*Q';(A\“' x* Chq (A)
=13\, 00+ (3N (o, 2 H)+0 (1,2,0)% 1 (3,0,7\D
= /3, 09+ £0,3,-6D+ Loso oo+ L6,0,-T)

s (3+0% 06+ , 1434+ OO ,0-L-0"2)

- (a4 @Y
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Revisiting the Product AB

ROW1 (A) . CO|1 (B) ROW1 (A) . C0|2 (B)
AB — Rowsz (A) - Coli (B) Rowgz (A) - Colz (B)

Rowm (A) - Coly (B) Rowa (A) - Colz (B)

Look at the first column:

Row(A) - Col{(B)
ROW2(A) . C0|1 (B)

Rowm(A) - Col1(B)

Rowy (A) - Col, (B)
Rows (A) - Col, (B)

Row (A) - Coln (B)
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Revisiting the Product AB

Row; (A) - Coly (B) Rowq (A)-Col2(B) --- Rowj (A)- Col,(B)

Rowz (A) - Colt (B)  Rowz (A)-Colz(B) -+ Rowz(A) - Col,(B)
AB = : : - :

Rowm (A) - Coly (B) Rowm (A) - Colz (B) -~ Rowm (A) - Coln (B)

Look at the first column:

Row+(A) - Col1(B) [ Row1(A) - Col(X) "
Rowsy(A) - Col(B) Rowsz(A) - Col(X)

looks like {
Rowm(A) - Col1(B)

Rowm(A) - Col4(X)
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Revisiting the Product AB

Row; (A) - Coly (B) Rowq (A)-Colz2(B) --- Row; (A)- Col,(B)

Rowz (A) - Coly (B) Rowz (A)-Colz(B) -+ Rowz(A) - Col,(B)
AB = : : - :

Rowm (A) - Coly (B) Rowm (A) - Colz (B) -~ Rowm (A) - Coln (B)

Look at the first column:
Row+(A) - Col1(B) [ Row1(A) - Col{(X) "
Rows(A) - Col(B) Rowz(A) - Coly(X) ‘

looks like | _
Rowm(A) - Col(B) | Rown(A) - Coli(X) |

This is the matrix-vector product of A with the vector Col{(B)

Coly(AB) = AColy(B).
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Revisiting the Product AB

Column Vectors of the Product AB

If Ain an m x p matrix and B is a p x n matrix, then the product
ABis the m x n matrix whose columns are defined via the matrix-
vector products

CO|,(AB) = ACOl,(B)

This says that each column vector of the product AB is a matrix-vector
product that looks like “AX” where the matrix is the matrix A from the

left and the vector is a column vector from the matrix on the right, B.
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Example
1 -3 2 0 2
A_[_z 2], and B_[1 —46]

Determine the product AB by computing the column vectors as the
matrix-vector products Col;(AB) = A Col;(B).

AR Cod (ABY- NaGo, (R)
A X3

J - \ -3

3 [Q 7‘}<21\?

L faen, ) = (D

&), (A8): Aas. (B) - L\Z 2]“"“7
- (o+12,0-%7) = (12,-8
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1 -3 2 0 2
A:[72 2], and B:{1 _a 6}

G 6y A Gl 5 (B)
L\ -3] (2.0 = Az-lgfufnj; (e, 9)
-t o2

xA

_ - 2 -le
pe - LZ )
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The Product AB

If Ais an m x p matrix and B is a p x n matrix, then the product AB is
the m x n matrix whose row vectors are given by

Row;(AB) = B Row;(A), i=1,...,m.

We know that (XY)7 = YTXT and Col;(XY) = X Col;(Y).

Bowi (AR) = G ((agY)
= G (A
F a (R) - R oot (R
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The Product A”X

Suppose Ais an m x n matrix and X is a vector in R™. Then the product
ATX is the vector in R given by

ATX = (Col{(A)-X,Cola(A)-X,...,Coly(A)-X)

= X1 Rowj (A) + Xo ROW2(A) + -+ Xm ROWm(A).

J

Since Row;(AT) = Col;(A) and Col;(AT) = Row;(A), these match our previous
representations for A” instead of A:

ATX = ( Row;(AT)-X, Rowz(AT) X, ..., Rowp(AT) )?>
— ——— ——

Col1(A) Coly(A) Coln(A)

ATX = x; Coly (AT) +X2 Coli (AT) + - - + X Col m(AT)
—_—— —— N—
Rows (A) Rowz(A) Rowm(A)
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Example

1 -1
LetA{ 0 2],)?(3,1>and}7(2,1,1).Eva|uate
-2 1

/qj?, /4-rj7, (/45?) . j7’ Eir](j j? . (/*7-j7)‘

A% - {(0-2\ }(3,17 . (31,042, -64\D
e am 5

P\TI’?—_ [\ o "L} ('ZI—I/\7 = <"?z-1’0’7’)2"2—('[7
- T \ | :<-U\)\7
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1 -1
A—[ 0 2],)?—<3,1>and;7—<—2,—1,1>
-2
pr- (2,2.-5> L Agys (2,0

A) % = (2,2, -5 C-2,-1, D
= - -2-S = -\

)><b<A/\—:O N <(2/|7. (—‘4/\7:'\_&*\ _—‘\\

We found that
(AR) -7 =% (ATY)
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Dot Products & Transposes

Suppose Ais an mx n matrix, X is a vector in R" and y is a vector
in R™M. Then

Note that the left side of the equation is a dot product of vectors in R™,
whereas the right side is a dot product in R". So the number of
products and sums on each side is different when m # n, but the final

value is the same.
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