September 25 Math 2306 sec. 52 Spring 2023

Consider the second order homogeneous ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \quad \text { for } \quad x>0
$$

- Note that $y_{1}=x$ is a solution.
- Question: Is $y=c_{1} y_{1}$ the general solution? (Why/why not?)

No, the ODE is $2^{\text {nd }}$ order, the ne should
be a $c_{2} y_{2}$ part.

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 .
$$

Standard Form

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Some things to keep in mind:

- Every fundamental solution set has two linearly independent solutions y_{1} and y_{2},
- The general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we know one solution $y_{1}(x)$. This section is about a process called Reduction of order. Reduction of order is a method for finding a second solution by assuming that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

The goal is to find the unknown function u.

Context

- We start with a second order, linear, homogeneous ODE in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

- We know one solution y_{1}. (Keep in mind that y_{1} is a known!)
- We know there is a second linearly independent solution (section 6 theory says so).
- We try to find y_{2} by guessing that it can be found in the form

$$
y_{2}(x)=u(x) y_{1}(x)
$$

where the goal becomes finding u.

- Due to linear independence, we know that u cannot be constant.

Example
Find the general solution to the ODE $\quad x^{2} y^{\prime \prime}-x y^{\prime}+y=0$ for $x>0$ given that $y_{1}(x)=x$ is one solution.

In standard form, the ODF is

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=0 \quad y_{1}=x
$$

st $y_{2}=u y_{1}=x u$ sub into the one

$$
\begin{gathered}
y_{2}^{\prime}=1 u+x u^{\prime}=u+x u^{\prime} \\
y_{2}^{\prime \prime}=u^{\prime}+1 u^{\prime}+x u^{\prime \prime}=2 u^{\prime}+x u^{\prime \prime} \\
y_{2}^{\prime \prime}-\frac{1}{x} y_{2}^{\prime}+\frac{1}{x^{2}} y_{2}=0 \\
2 u^{\prime}+x u^{\prime \prime}-\frac{1}{x}\left(u+x u^{\prime}\right)+\frac{1}{x^{2}}(x u)=0
\end{gathered}
$$

$$
\begin{gathered}
2 u^{\prime}+x u^{\prime \prime}-\frac{1}{x} u-u^{\prime}+\frac{1}{x} u=0 \\
x u^{\prime \prime}+u^{\prime}=0
\end{gathered}
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$
w solves the $1^{\text {St }}$ order ODE

$$
x w^{\prime}+w=0
$$

This is linear and separable. Let's separate variables

$$
\begin{aligned}
& x \frac{d w}{d x}+w=0 \Rightarrow x \frac{d w}{d x}=-w \Rightarrow \frac{d w}{d x}=\frac{-w}{x} \\
& \frac{1}{w} d w=-\frac{1}{x} d x \\
& \int \frac{1}{w} d w=\int \frac{-1}{x} d x
\end{aligned}
$$

$$
\begin{aligned}
\ln |\omega| & =-\ln x+c \\
e^{\ln |\omega|} & =e^{\ln x^{-1}+c}=e^{c} e^{\ln x^{-1}} \\
|\omega| & =e^{c} x^{-1} \quad \text { Let } k= \pm e^{c} \\
\omega & =k x^{-1}
\end{aligned}
$$

Since $w=u^{\prime}, \quad u=\int \omega d x$

$$
y_{1}=x
$$

$$
y_{2}=u y_{1}=\left(k \ln x+k_{1}\right) x=k \times \ln x+k_{1} x
$$

The general solution

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

we can take $y_{2}=x \ln x$

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-\text { is known. }
$$

Set $y_{2}=u y_{1} \quad$ sub into the $O D E$

$$
\begin{aligned}
y_{2}^{\prime} & =u^{\prime} y_{1}+u y_{1}^{\prime} \\
y_{2}^{\prime \prime} & =u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& =u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
y_{2}^{\prime \prime} & +P(x) y_{2}^{\prime}+Q(x) y_{2}=0
\end{aligned}
$$

We know that $y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0$.

$$
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x)\left(u y_{1}\right)=0
$$

Collect $u^{\prime \prime}, u^{\prime}$, and u.

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\underbrace{(\underbrace{\prime})}_{\substack{\prime \prime \\ 0 \\ \mathbf{s i n}^{\prime} u \text { solution } \\ y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}}} u=0
$$

The ODE for h is

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}=0
$$

If $w=u^{\prime}$, then w satisfies

$$
y \cdot w^{\prime}+\left(z y_{1}^{\prime}+P(x) y_{1}\right) w=0
$$

A first arden linear out separable ODE.
Let's separate.

$$
\begin{aligned}
& y_{1} \frac{d w}{d x}+\left(2 \frac{d y_{1}}{d x}+P(x) y_{1}\right) w=0 \\
& y_{1} \frac{d w}{d x}=-\left(2 \frac{d y_{1}}{d x}+P(x) y_{1}\right) w \\
& \frac{1}{w} \frac{d w}{d x}=-\left(2 \frac{\frac{d y_{1}}{d x}}{y_{1}}+P(x) \frac{y_{1}}{y_{1}}\right) \\
& \frac{1}{w} \frac{d w}{d x} d x=\left(-2 \frac{\frac{d y_{1}}{d x}}{y_{1}}-P(x)\right) d x \\
& \int \frac{1}{w} d w=\int-2 \frac{d y_{1}}{y_{1}}-\int P(x) d x \\
& \ln |w|=-2 \ln \left|y_{1}\right|-\int P(x) d x+c \\
& e^{\ln |w|}=e^{-2 \ln \left|y_{1}\right|-\int P(x) d x+c}
\end{aligned}
$$

$$
|w|=e^{\ln y_{1}^{2}} \cdot e^{-\int p(x) d x} \cdot e^{c}
$$

Let e^{c} be reploced with ± 1 to discard the dosolute value bas on w.

$$
\begin{aligned}
& w=y_{1}^{-2} e^{-\int p(x) d x}=\frac{e^{-\int p(x) d x}}{y_{1}^{2}} \\
& u=\int w d x \Rightarrow u=\int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x
\end{aligned}
$$

\qquad
ars $y_{2}=u y_{1}$

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}(x)=y_{1}(x) u(x) \quad \text { where } \quad u(x)=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Find y_{2} using reduction of order,

$$
y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x
$$

$$
\begin{aligned}
& P(x)=4, \quad-\int p(x) d x=-\int 4 d x=-4 x \\
& e^{-\int p(x) d x}=e^{-4 x} \\
& \left(y_{1}\right)^{2}=\left(e^{-2 x}\right)^{2}=e^{-4 x}
\end{aligned}
$$

$$
u=\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x=\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x
$$

So $y_{2}=4 y_{1}=x e^{-2 x}$
The general solution

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
\end{aligned}
$$

Apply $y(0)=1$ and $y^{\prime}(0)=1$

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{-2 x}-2 c_{2} x e^{-2 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=1 \Rightarrow c_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}(0)=-2 c_{1} e^{0}+c_{2} e^{0}-2 c_{2} \cdot 0 \cdot e^{0}=1 \\
&-2 c_{1}+c_{2}=1 \Rightarrow c_{2}=1+2 c_{1}=1+2=3
\end{aligned}
$$

The solution to the IVP is

$$
y=e^{-2 x}+3 x e^{-2 x}
$$

