September 26 Math 2306 sec. 51 Fall 2022

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order¹, linear, homogeneous equation with constant coefficients

$$arac{d^2y}{dx^2}+brac{dy}{dx}+cy=0, \quad ext{with } a
eq 0.$$

The **characteristic equation** for this ODE is the second degree polynomial equation

$$am^2+bm+c=0.$$

If *m* is a solution to this polynomial equation, then $y = e^{mx}$ is a solution to the differential equation. There are three cases.

¹We'll extend the result to higher order at the end of this section. () + () + () + ()

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

September 26, 2022

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root *m*, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

A D N A B N A B N A B N

September 26, 2022

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

September 26, 2022

Multiple Choice

We can use a characteristic equation to find the **general solution** of which ODE(s)?

1.
$$y'' + xy' - y = 0$$

2. $y'' + 2y' + y = 0$

3.
$$y'' + 9y = 0$$

- 4. $y'' + 9y = \sqrt{x}$
- 5. all of the above
- 6. 1., 2., and 3. only
- 7.) 2., and 3. only
- 8. 2., 3., and 4. only

< ロ > < 同 > < 回 > < 回 >

Solve the IVP

y'' + 6y' + 9y = 0, y(0) = 4, y'(0) = 0Characteristic e m2+6m+9=0 $(m+3)^2 = 0 \implies m = -3$ double not A fundamental solution set is $y_1 = e^{-3x}$ $above y_2 = x e^{-3x}$ The general solution y= c, e3x + cz xe3x ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Apply
$$\mathcal{G}(0 = 4 \text{ and } y'(0 = 0),$$

 $y'(x) = -3c, e^{3x} + c_2 e^{3x} - 3c_2 \times e^{3x}$
 $y(0) = c_1 e^0 + c_2 \cdot 0 \cdot e^0 = 4 \implies c_1 = 4$
 $y'(0) = -3(1 e^0 + c_2 e^0 - 3c_3 \cdot 0 e^0 = 0 \implies -3c_1 + c_2 = 0$
 $c_2 = 3c_1 = 3(4) = 12$
The solution to the IVP is
 $y = 4 e^{-3x} + 12 \times e^{-3x}$

September 26, 2022 7/57

996

(ロ) (四) (主) (主) (主)

Find the general solution of

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0.$$

The characteristic equation is m²+4 m+6=0. Complete the square:

$$M^{2} + 4 m + 4 - 4 + 6 = 0$$

$$(m+2)^{2} + 2 = 0$$

$$(m+2)^{2} = -2 \implies m+2 = \pm \sqrt{-2}$$

$$\implies m = -2 \pm \sqrt{2} \cdot 2 \implies m = -2 \pm \sqrt{2} \cdot 2 = -2$$

September 26, 2022 8/57

hooks like at is with a=-2, B=JZ The solutions are

 $X_1 = e^{zt} Gor(Jzt), X_2 = e^{zt} Sin(Jzt)$

The general solution is $X = c_1 e^{2t} c_2 (Jzt) + c_2 e^{-2t} S_{2n} (Jzt)$

イロト イ理ト イヨト イヨト ニヨー

Determine the general solution of the second order, linear, constant coefficient ODE

y'' + 3y' + 2y = 0

$$y + 3y + 2y = 0$$

$$m^{2} + 3m + 2 = 0$$

$$m^{2} + 3m + 2 = 0$$

$$(m+1)(m+2) = 0$$

$$m = -1$$

$$m = -2$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
 September 26, 2022

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

◆□ → < @ → < 重 → < 重 → September 26, 2022

Find the general solution of the ODE.

$$y'''-3y''+3y'-y=0$$

Linear, homogeneous, constant coefficient.
Charac. equation
 $m^3 - 3m^2 + 3m - 1 = 0$
perfect cube $(m-1)^3 = 0$
 $M = 1$ is a triple root
The three solutions are

1

September 26, 2022 13/57

2

イロト イヨト イヨト イヨト

$$y_1 = e^{4x}$$
, $y_2 = xe^{x}$, $y_3 = x^2e^{x}$
The general solution is
 $y_1 = c_1e^{x} + c_2 xe^{x} + c_3 x^2e^{x}$

September 26, 2022 14/57

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Consider the 7th order homogeneous ODE

 $y^{(7)} - 10y^{(6)} + 48y^{(5)} - 144y^{(4)} + 288y^{\prime\prime\prime} - 384y^{\prime\prime} + 320y^{\prime} - 128y = 0$

The characteristic equation, completely factored, is

$$((m-1)^2+3)^2(m-2)^3=0.$$

Find the general solution.

A fundamental solution set has 7 lin. independent solutions

$$y_1 = e^{2x}, y_2 = x e^{2x}, y_3 = x^2 e^{2x}$$

$$y_1 = e^{2x}, y_2 = x e^{2x}, y_3 = x^2 e^{2x}$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

$$(m-2)^3 = 0 \implies m = 2 \quad triple root$$

Or
$$((m-1)^{2}+3)^{2} = 0$$

This is $((m-1)^{2}+3)((m-1)^{2}+3) = 0$
 $(m-1)^{2}+3=0 \implies (m-1)^{2}=-3$
 $m-1=\pm\sqrt{-3} \implies m=1\pm\sqrt{3}i$
Complex bair $M=1+\sqrt{3}i$, $m=1-\sqrt{3}i$
each a double root.
 $d=1$ and $\beta=\sqrt{3}$
 $y_{4} = e^{X}G_{5}(\sqrt{3}X)$, $y_{5} = e^{X}Sin(\sqrt{3}X)$
 $y_{6} = x(e^{X}G_{5}(\sqrt{3}X))$, $y_{7} = x(e^{X}Sin(\sqrt{3}X))$

September 26, 2022 16/57

The general solution is $y = C_1 e^{2x} + C_2 \times e^{2x} + C_3 \times e^{2x} + C_4 e^{2x} G_5(53x)$ $+C_{s}\overset{\times}{e}S_{n}(\overline{3}\times)+(\varepsilon\times\overset{\times}{e}C_{s}(\overline{3}\times)+(\varepsilon_{7}\times\overset{\times}{e}S_{n}(\overline{3}\times))$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e.g. e^x constant
- ► sines and/or cosines, Sin (kx) or Cos (kx) k- constant
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

イロト 不得 トイヨト イヨト ヨー ろくの