September 26 Math 2306 sec. 51 Fall 2022

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

The characteristic equation for this ODE is the second degree polynomial equation

$$
a m^{2}+b m+c=0 .
$$

If m is a solution to this polynomial equation, then $y=e^{m x}$ is a solution to the differential equation. There are three cases.

[^0]
Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Multiple Choice

We can use a characteristic equation to find the general solution of which ODE(s)?

1. $y^{\prime \prime}+x y^{\prime}-y=0$
2. $y^{\prime \prime}+2 y^{\prime}+y=0$
3. $y^{\prime \prime}+9 y=0$
4. $y^{\prime \prime}+9 y=\sqrt{x}$
5. all of the above
6. 1., 2., and 3. only
(7.) 2., and 3. only
7. 2., 3., and 4. only

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Characteristic e $\quad m^{2}+6 m+9=0$

$$
(m+3)^{2}=0 \Rightarrow m=-3 \text { doable root }
$$

A fundament al solution set is

$$
y_{1}=e^{-3 x} \quad \text { and } \quad y_{2}=x e^{-3 x}
$$

The gevence solution $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$

Apply $y(0)=4$ and $y^{\prime}(0)=0$.

$$
\begin{aligned}
& y^{\prime}(x)=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=4 \Rightarrow c_{1}=4 \\
& y^{\prime}(0)=-3 c_{1} e^{0}+c_{2} e^{0}-3 c_{3} \cdot 0 e^{0}=0 \Rightarrow-3 c_{1}+c_{2}=0 \\
& c_{2}=3 c_{1}=3(4)=12
\end{aligned}
$$

The solution to the IVP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Example

Find the general solution of $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0$.
The characteristic equation is

$$
m^{2}+4 m+6=0
$$

Complete the squame:

$$
\begin{aligned}
& m^{2}+4 m+4-4+6=0 \\
& (m+2)^{2}+2=0 \\
& (m+2)^{2}=-2 \Rightarrow m+2= \pm \sqrt{-2} \\
& \Rightarrow \\
& m=-2 \pm \sqrt{2} i
\end{aligned}
$$

hooks like $\alpha \pm i \beta$ with $\alpha=-2, \quad \beta=\sqrt{2}$
The solutions are

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), \quad x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The general solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Exercise
Determine the general solution of the second order, linear, constant coefficient ODE

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

$$
\begin{gathered}
m^{2}+3 m+2=0 \\
(m+1)(m+2)=0 \\
m=-1 \\
m=-2
\end{gathered}
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Linear, homogeneous, constant coefficient.
Charac equation

$$
m^{3}-3 m^{2}+3 m-1=0
$$

perfect cube $(m-1)^{3}=0$

$$
m=1 \text { is a triple root }
$$

The three solutions are

$$
y_{1}=e^{1 x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
$$

The general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Example
Consider the $7^{\text {th }}$ order homogeneous ODE

$$
y^{(7)}-10 y^{(6)}+48 y^{(5)}-144 y^{(4)}+288 y^{\prime \prime \prime}-384 y^{\prime \prime}+320 y^{\prime}-128 y=0
$$

The characteristic equation, completely factored, is

$$
\left((m-1)^{2}+3\right)^{2}(m-2)^{3}=0 .
$$

Find the general solution.
A funderental solution set has 7 lin . independent solutions

Look fir the roots:

$$
\begin{aligned}
& (m-2)^{3}=0 \Rightarrow m=2 \quad \text { triple root } \\
& y_{1}=e^{2 x}, y_{2}=x e^{2 x}, y_{3}=x^{2} e^{2 x}
\end{aligned}
$$

September 26, 2022
or $\quad\left((m-1)^{2}+3\right)^{2}=0$
This is $\left((m-1)^{2}+3\right)\left((m-1)^{2}+3\right)=0$

$$
\begin{aligned}
(m-1)^{2}+3 & =0 \Rightarrow(m-1)^{2}=-3 \\
m-1 & = \pm \sqrt{-3} \Rightarrow m=1 \pm \sqrt{3} i
\end{aligned}
$$

Complex pair $m=1+\sqrt{3} i, \quad m=1-\sqrt{3} i$ each a double root.

$$
\begin{aligned}
& \alpha=1 \quad \text { and } \quad \beta=\sqrt{3} \\
& y_{4}= e^{x} \cos (\sqrt{3} x), y_{5}=e^{x} \sin (\sqrt{3} x) \\
& y_{6}= x e^{x} \cos (\sqrt{3} x), y_{7}=x e^{x} \sin (\sqrt{3} x)
\end{aligned}
$$

The general solution is

$$
\begin{aligned}
y=c_{1} e^{2 x} & +c_{2} x e^{2 x}+c_{3} x^{2} e^{2 x}+c_{4} e^{x} \cos (\sqrt{3} x) \\
& +c_{5} e^{x} \sin (\sqrt{3} x)+c_{6} x e^{x} c_{0}(\sqrt{3} x)+c_{7} x e^{x} \sin (\sqrt{3} x)
\end{aligned}
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. $e^{m x} m$-constant
- sines and/or cosines, $\quad \sin (k x)$ ar $\cos (k x) \quad k$-constant
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

[^0]: ${ }^{1}$ We'll extend the result to higher order at the end of this section.

