September 26 Math 2306 sec. 52 Fall 2022

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order¹, linear, homogeneous equation with constant coefficients

$$arac{d^2y}{dx^2}+brac{dy}{dx}+cy=0, \quad ext{with } a
eq 0.$$

The **characteristic equation** for this ODE is the second degree polynomial equation

$$am^2+bm+c=0.$$

If *m* is a solution to this polynomial equation, then $y = e^{mx}$ is a solution to the differential equation. There are three cases.

¹We'll extend the result to higher order at the end of this section. () + () + () + ()

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

September 26, 2022

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root *m*, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

A D N A B N A B N A B N

September 26, 2022

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

< ロ > < 同 > < 回 > < 回 >

September 26, 2022

Multiple Choice

We can use a characteristic equation to find the **general solution** of which ODE(s)?

1.
$$y'' + xy' - y = 0$$

2. $y'' + 2y' + y = 0$

3.
$$y'' + 9y = 0$$

- 4. $y'' + 9y = \sqrt{x}$
- 5. all of the above
- 6. 1., 2., and 3. only
 7. 2., and 3. only
 - 8. 2., 3., and 4. only

< ロ > < 同 > < 回 > < 回 >

Solve the IVP

$$y'' + 6y' + 9y = 0$$
, $y(0) = 4$, $y'(0) = 0$

Characteristic egn:
$$m^2 + 6m + 9 = 0$$

 $(m+3)^2 = 0 \implies m=-3$ forble

The solutions are

$$y_1 = e^{-3x}$$
 and $y_2 = xe^{-3x}$

The general solution is $y=C, e + C_2 \times e^{-3\chi}$ Apply y(0) = 4 and y'(0) = 0 $y' = -3c_1 e^{3x} + c_2 e^{3x} - 3c_2 \times e^{3x}$

 $y(0) = C_1 e^2 + C_2 \cdot 0 \cdot e^2 = 4 \implies C_1 = 4$

 $y'(0) = -3(, e' + C_2 e' - 3(, 0)e' = 0 - 3(, + (z = 0))$

 $\Rightarrow C_2 = 3C_1 = 3(4) = 12$

The solution to the IVP is $y=4e^{-3x} + 12xe^{-3x}$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Find the general solution.

$$y'' + 4y = 0$$

Characheristic eqn: $m^2 + 4 = 0$
$$\implies m^2 = -4$$
$$m = \pm \sqrt{-4} = \pm 2i$$
$$m = d \pm ip \quad \text{with} \quad d = 0 \text{ and } p = 2$$
The solutions are
 $y_1 = e^{0x} Cos(2x)$, $y_2 = e^{0x} Sn(2x)$
(Description = 2.50)
September 26,202 8/58

The general solution is y= C, Cos (2x) + C2 Sim (2x)

Exercise

Determine the general solution of the second order, linear, constant coefficient ODE

$$y'' + 3y' + 2y = 0$$

$$y = c_{1}e^{-2x} + c_{2}e^{x}$$

$$m^{2} + 3m + 2 = 0$$

$$(m + 2)(m + 1) = 0$$

$$m_{1} = -2$$

$$m_{2} = -1$$

3

イロン イ理 とく ヨン イヨン

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
 September 26, 2022

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
September 26, 2022

Find the general solution of the ODE.

$$y'''-3y''+3y'-y = 0$$

Linear, homogeneous, constant coef.
The Characteristic equation is
$$m^{3}-3m^{2}+3m-1 = 0$$
$$\Rightarrow (m-1)^{3}=0 \Rightarrow m=1 \quad is a = root$$
The solutions are
 $y_{1}=e^{4x}$, $y_{2}=xe^{x}$, $y_{3}=x^{2}e^{x}$

The general solution is $y = C_1 \stackrel{\times}{e} + C_2 \times \stackrel{\times}{e} + C_3 \times \stackrel{\times}{e}$

September 26, 2022 14/58

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the 7th order homogeneous ODE

 $y^{(7)} - 10y^{(6)} + 48y^{(5)} - 144y^{(4)} + 288y^{\prime\prime\prime} - 384y^{\prime\prime} + 320y^{\prime} - 128y = 0$

The characteristic equation, completely factored, is

$$((m-1)^2+3)^2(m-2)^3=0.$$

Find the general solution.

A fundamental solution set must have $\overline{7}$ Jin. independent solutions. Find the roots: $(m-2)^3 = 0 \implies m = 2$ triple root $y_1 = e^{2x}$, $y_2 = x e^{2x}$, $y_3 = x^2 e^{2x}$ September 26, 2022 16/58

$$\left(\begin{pmatrix} (m-1)^2 + 3 \end{pmatrix}^2 = 0 & (m-1)^2 + 3 \end{pmatrix} \begin{pmatrix} (m-1)^2 + 3 \end{pmatrix} = 0$$

$$(m-1)^2 + 3 = 0 \implies (m-1)^2 = -3$$

$$\implies (m-1) = \pm \sqrt{-3} \implies m = 1 \pm \sqrt{3} \downarrow'$$

$$m = 1 \pm \sqrt{3} \downarrow \quad \text{and both double rootr}$$

$$y_u = e^{1x} C_{0x} (\sqrt{3} \times) , \quad y_s = e^{1x} S_{0x} (\sqrt{3} \times)$$

$$y_6 = \times e^x C_{0s} (\sqrt{3} \times) , \quad y_7 = \times e^x S_{0x} (\sqrt{3} \times)$$

September 26, 2022 17/58

・ロト・西ト・ヨト・ヨー つくぐ

The general solution $y = C_1 e^{2x} + C_2 x e^{x} + C_3 x^2 e^{2x} + C_4 e^{x} \cos(5x)$ + $C_{5} \stackrel{\times}{e} S_{1n}(\overline{3} \times) + C_{6} \times \stackrel{\times}{e} G_{5}(\overline{3} \times) + C_{7} \times \stackrel{\times}{e} S_{1n}(\overline{3} \times)$

September 26, 2022 18/58

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e.g., e^r constant
- sines and/or cosines, Sin (kx), or Cos (kx) V-Constant
 and products and current in
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example²

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

The left is constant coef. and the right is
a polynomial.
 $g(x) = 8x + 1$ is a 1st degree polynomial
Guess y_p is about a 1st degree polynomial
Set $y_p = Ax + B$ for A, B anstant

substitute
$$y_{p}' = A$$
, $y_{p}'' = 0$
into
 $y_{p}'' - Y_{y} + Y_{p} = 8x + 1$
 $0 - 4(A) + 4(Ax + B) = 8x + 1$
 $4Ax + (-4A + 4B) = 8x + 1$
Match Jike terms
 $4A = 8 \implies A = 2$
 $-4A + 4B = 1 \implies B = \frac{1}{4}(1 + 4A) = \frac{1}{4}(1 + 8)$
 $= \frac{9}{4}$
September 28, 2022 21/58

 $y_p = 2 \times + \frac{9}{9}$ Hence

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@ September 26, 2022 22/58