September 27 Math 2306 sec. 52 Fall 2021

Section 9: Method of Undetermined Coefficients

We were considering linear, constant coefficient, nonhomogeneous ODEs

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

At first, we are looking at the y_{p} part. The general solution will be $y=y_{c}+y_{p}$.

Method of Undetermined Coefficients

This is a method for finding a particular solution to

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

by assuming that y_{p} is the same kind of function as g. To find the general solution

- Find y_{c}.
- Determine what type of function g is and set up a guess for y_{p} of this form.
- Compare the guess to y_{c} and multiply by x^{n} if needed to get rid of common like terms.
- Substitute our guess into the ODE,
- and then solve a system of equations for the coefficients by matching like terms.

The Glitch
y_{p} cant share like terms in common with y_{c}.

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

Here $g(x)=3 e^{x}$
we guessed $y_{p}=A e^{x}$ But it didrit work.

The Glitch
y_{p} cant share like terms in common with y_{c}.

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

- What is y_{c} ? y_{c} solver $y^{\prime \prime}-y^{\prime}=0$

Chiarcctaistic ogpu $\quad m^{2}-m=0$

$$
m(m-1)=0
$$

$m=0$ or $m-1=0$ is. $m=1$

$$
y_{1}=e^{o x}=1, \quad y_{2}=e^{x} \quad y_{c}=c_{1}+c_{2} e^{x}
$$

The Glitch

y_{p} cant share like terms in common with y_{c}.

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

- What is y_{c} ? $\quad y_{c}=c_{1}+c_{2} e^{x}$
- What is the correct form for y_{p} ?

$$
y_{p}=A x e^{x} \cos ^{2} e^{x}
$$

The Glitch
y_{p} cant share like terms in common with y_{c}.

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

What is y_{c} ? $y_{c}=c_{1}+c_{2} e^{x}$

- What is the correct form for y_{p} ?

$$
y_{p}=A x e^{x}
$$

Find y_{p}.

$$
y_{p}=3 x e^{x}
$$

$$
\begin{aligned}
y_{p}^{\prime} & =A e^{x}+A x e^{x} \\
y_{p}^{\prime \prime} & =A e^{x}+A e^{x}+A x e^{x} \\
y_{p}^{\prime \prime}-y_{p}^{\prime} & =A e^{x}=3 e^{x} A^{\prime \prime} 3
\end{aligned}
$$

The Glitch
y_{p} cant share like terms in common with y_{c}.

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

- What is y_{c} ?

$$
y_{c}=c_{1}+c_{2} e^{x}
$$

- What is the correct form for y_{p} ? $y_{p}=A x e^{x}$
- Find $y_{p} . y_{p}=3 \times e^{x}$

$$
y^{-y^{c^{2}}}
$$

-What is the general solution?

$$
y=c_{1}+c_{2} e^{x}+3 x e^{x}
$$

Find the form of the particular soluition

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find y_{c} : Characteristic eau

$$
\begin{gathered}
m^{2}-4 m+u=0 \\
(m-2)^{2}=0 \Rightarrow m=2 \text { double } \\
y_{1}=e^{2 x}, y_{2}=x e^{2 x} \text { so } y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{gathered}
$$

Using superposition, set $y_{p}=y_{p_{1}}+y_{p_{2}}$ when e yo, solves $y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)$
and $y_{p_{2}}$ solves $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$

For $g_{1}(x)=\sin (4 x)$

$$
\begin{aligned}
& (x)=\sin (4 x) \\
& y_{p_{1}}=A \sin (4 x)+B \cos (4 x) \begin{array}{c}
\sqrt{ } \\
\text { correct } \\
\text { form } \\
y_{c}=c_{1} e^{2 y}+c_{2} x e^{2 x}
\end{array} \quad . \quad \text {. }
\end{aligned}
$$

For $g_{2}(x)=x e^{2 x}$

$$
\begin{aligned}
g_{2}(x) & =x e^{-x} \\
y_{P_{2}} & =(C x+D) e^{2 x}=C x e^{2 x}+D e^{2 x}+y^{2} \\
y_{P_{2}} & =(C x+D) e^{2 x} x^{2} \\
& =\left(C x^{3}+D x^{2}\right) e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

September 27, $2021 \quad 5 / 36$

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
$$

Find the form of the particular soluition

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find $y c$: Characteist.c eqn

$$
\begin{gathered}
m^{3}-m^{2}+m-1=0 \\
m^{2}(m-1)+(m-1)=0 \\
(m-1)\left(m^{2}+1\right)=0 \\
m-1=0 \Rightarrow m=1 \quad y_{1}=e^{1 x}=e^{x} \\
m^{2}+1=0 \Rightarrow m^{2}=-1 \Rightarrow \alpha^{x}, j \\
\alpha=0 \quad \beta=1 \\
y_{2}=e^{0 x} \cos x=\cos x, y_{3}=e^{0 x} \sin x=\operatorname{Sin}_{\text {Seplember 27,2021 }}
\end{gathered}
$$

$$
\begin{array}{r}
y_{1}=e^{x}, y_{2}=\cos x, \quad y_{3}=\sin x \\
y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x
\end{array}
$$

Let $y_{p}=y_{p_{1}}+y_{p_{2}}$ where
Yep, solves $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x$

$$
\begin{aligned}
g_{1}(x)=\cos x, y_{p_{1}} & =(A \cos x+B \sin x) x \\
& =A x \cos x+B x \sin x
\end{aligned}
$$

Yer solve $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=x^{4}$

$$
g_{2}(x)=x^{4}, y_{P_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G
$$

September 27, $2021 \quad 8 / 36$

$$
y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
$$

Solve the IVP

$$
y^{\prime \prime}-y=e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

Find yo: Characteristic eau

$$
\begin{gathered}
m^{2}-1=0 \Rightarrow m^{2}=1 \\
m= \pm 1 \\
y_{1}=e^{-x}, y_{2}=e^{x} \quad y_{1}=c_{1} e^{-x}+c_{2} e^{x}
\end{gathered}
$$

Find $y_{e}: g(x)=e^{-x}$

$$
\begin{aligned}
& g(x)=e \\
& y_{p}=\left(A e^{-x}\right) x=A x e^{-x}
\end{aligned}
$$

Sub to find A.

$$
\begin{aligned}
& y_{e}=A x e^{-x} \\
& y_{p}^{\prime}=A e^{-x}-A x e^{-x} \\
& y_{p}^{\prime \prime}=-2 A e^{-x}+A x e^{-x} \\
& y_{p}^{\prime \prime}-y_{p}=e^{-x} \\
&-2 A e^{-x}+A x e^{-x}-A x e^{-x}=e^{-x} \\
&-2 A e^{-x}=e^{-x} \\
&-2 A=1 \\
& A=\frac{-1}{2}
\end{aligned}
$$

The genera solution

$$
y=c_{1} e^{-x}+c_{2} e^{x}-\frac{1}{2} x e^{-x}
$$

Now apply $y(0)=-1, y^{\prime}(0)=1$

$$
\begin{gathered}
y^{\prime}=-c_{1} e^{-x}+c_{2} e^{x}-\frac{1}{2} e^{-x}+\frac{1}{2} x e^{-x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}-\frac{1}{2} \cdot 0 \cdot e^{0}=-1 \\
c_{1}+c_{2}=-1 \\
y^{\prime}(0)=-c_{1} e^{0}+c_{2} e^{0}-\frac{1}{2} e^{0}+\frac{1}{2} \cdot 0 \cdot e^{0}=1 \\
-c_{1}+c_{2}-\frac{1}{2}=1 \\
-c_{1}+c_{2}=\frac{3}{2}
\end{gathered}
$$

Solve

$$
\begin{aligned}
c_{1}+c_{2} & =-1 \\
-c_{1}+c_{2} & =\frac{3}{2}
\end{aligned}
$$

add
subtract

$$
\begin{array}{r}
2 c_{2}=\frac{1}{2} \Rightarrow c_{2}=\frac{1}{4} \\
2 c_{1}=-\frac{5}{2} \Rightarrow c_{1}=\frac{-5}{4}
\end{array}
$$

The solution to the IVP

$$
y=\frac{-5}{4} e^{-x}+\frac{1}{4} e^{x}-\frac{1}{2} x e^{-x}
$$

