September 27 Math 2306 sec. 52 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order¹, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$
, with $a \neq 0$.

If we put this in normal form, we get

$$\frac{d^2y}{dx^2} = -\frac{b}{a}\frac{dy}{dx} - \frac{c}{a}y.$$

Question: What sorts of functions *y* could be expected to satisfy

$$y'' = (constant) y' + (constant) y?$$

We look for solutions of the form $y = e^{mx}$ with m constant.

$$ay'' + by' + cy = 0$$
Sub $y = e^{mx}$ into the $00^{\frac{1}{2}}$.

$$y' = m^{\frac{m}{2}}$$

$$y'' = m^{\frac{m}{2}}$$

$$ay'' + by' + Cy = 0$$

$$a(m^{2}e^{mx}) + b(me^{mx}) + Ce^{mx} = 0$$

$$e^{mx} (am^{2} + bm + C) = 0$$

Suppose a, b, and c are real numbers and $a \neq 0$. The function $y = e^{mx}$ solves the second order, homogeneous ODE

$$ay'' + by' + cy = 0$$

on $(-\infty, \infty)$ provided m is a solution of the quadratic equation

$$am^2 + bm + c = 0.$$

Characteristic (a.k.a. Auxiliary) Equation

The characteristic equation for the second order, linear, homogeneous ODE ay'' + by' + cy = 0 is the quadratic equation

$$am^2 + bm + c = 0$$

There are three cases that we must consider.

- I $b^2 4ac > 0$ then there are two distinct real roots $m_1 \neq m_2$
- II $b^2 4ac = 0$ then there is one repeated real root $m_1 = m_2 = m$
- III $b^2 4ac < 0$ then there are two roots that are complex conjugates $m_{1,2} = \alpha \pm i\beta$ where α and β are real numbers and $\beta > 0$.

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$
.

Example

Find the general solution of the ODE.

$$y'' - 2y' - 2y = 0$$

The ODE is linear, z^{nd} order, homogeneous, u)
Constant coefficients. The characteristic equation
is $m^2 - 2m - 2 = 0$
Completing the square
 $m^2 - 2m + 1 - 1 - 2 = 0$
 $\left(\frac{-2}{2}\right)^2 = 1$

(m2-2m+1)-3=0

$$(m-1)^{2} = 3 \implies m-1 = \pm \sqrt{3}$$

$$m = 1 \pm \sqrt{3}$$
Two distinct roots
$$m_{1} = 1 + \sqrt{3}, \quad m_{2} = 1 - \sqrt{3}$$
A fundamental solution set is
$$(1-13)^{2}$$

A fundamental solution set is (1-15)x

y, = e , yz= e

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

There is only one real, double root, $m = \frac{-b}{2a}$.

Use reduction of order to find the second solution to the equation (in standard form)

$$y'' + \frac{b}{a}y' + \frac{c}{a}y = 0 \quad \text{given one solution} \quad y_1 = e^{-\frac{b}{2a}x}$$

$$y_2 = uy_1 \qquad u = \int \frac{e^{-\int P\omega dx}}{y_1^2} dx \qquad P(x) = \frac{b}{a}$$

$$-\int P\omega dx = -\int \frac{b}{a} dx = -\frac{b}{a} \times e^{-\frac{b}{a}x}$$

$$(y_1)^2 = \left(e^{-\frac{b}{2a}x}\right)^2 = e^{2\left(\frac{-b}{2a}x\right)} = e^{-\frac{b}{a}x}$$

$$u = \int \frac{e^{-\frac{b}{2a}x}}{y_1^2} dx = \int \frac{e^{-\frac{b}{a}x}}{e^{-\frac{b}{2a}x}} dx = \int dx = x$$

$$y_2 = uy_1 = x e^{-\frac{b}{a}x}$$

9/25

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

Example

Solve the IVP

$$y'' + 6y' + 9y = 0$$
, $y(0) = 4$, $y'(0) = 0$

The ODE is $2^{n/2}$ order, linear, homogeneous will constant coefficients. The characteristic equation is
$$m^2 + 6m + 9 = 0$$

$$(m+3)^2 = 0 \implies m = -3 \quad double root$$
A Annamental solution set is
$$y_1 = e^{3x} \quad y_2 = x e$$
The general solution is $y_2 = x e^{-3x}$
September 25, 2023 11/25

Apply
$$y(0)=4$$
, $y'(0)=0$
 $y'(x)=-3c_1e^{-3x}+c_2e^{-3x}-3c_2xe^{-3x}$
 $y(0)=c_1e^{+}+c_2e^{-}-3c_2xe^{-3x}$
 $y'(0)=-3c_1e^{+}+c_2e^{-}-3c_2xe^{-2}$
 $y'(0)=-3c_1e^{+}+c_2e^{-}-3c_2xe^{-2}$
 $-3c_1+c_2=0 \Rightarrow c_2=3c_1=3(4)=12$
The solution to the INP is
 $y=ye^{-3x}+12xe^{-3x}$