September 27 Math 2306 sec. 52 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If we put this in normal form, we get

$$
\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \frac{d y}{d x}-\frac{c}{a} y .
$$

Question: What sorts of functions y could be expected to satisfy

[^0]We look for solutions of the form $y=e^{m x}$ with m constant.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Sub $y=e^{m x}$ into the ODE.

$$
\begin{aligned}
& y^{\prime}=m e^{m x} \\
& y^{\prime \prime}=m^{2} e^{m x} \\
& a y^{\prime \prime}+b y^{\prime}+c y=0 \\
& a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
& e^{m x}\left(a m^{2}+b m+c\right)=0
\end{aligned}
$$

This will be true if m satisfies

$$
a m^{2}+b m+c=0
$$

Suppose a, b, and c are real numbers and $a \neq 0$. The function $y=e^{m x}$ solves the second order, homogeneous ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

on $(-\infty, \infty)$ provided m is a solution of the quadratic equation

$$
a m^{2}+b m+c=0 .
$$

Characteristic (a.k.a. Auxiliary) Equation

The characteristic equation for the second order, linear, homogeneous ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$ is the quadratic equation

$$
a m^{2}+b m+c=0
$$

There are three cases that we must consider.
I $b^{2}-4 a c>0$ then there are two distinct real roots $m_{1} \neq m_{2}$
II $b^{2}-4 a c=0$ then there is one repeated real root $m_{1}=m_{2}=m$
III $b^{2}-4 a c<0$ then there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$ where α and β are real numbers and $\beta>0$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

The $O D E$ is linear, $z^{\text {nd }}$ arden, homogeneous, wi constant coefficients. The characteristic equation is

$$
m^{2}-2 m-2=0
$$

Completing the square

$$
\begin{aligned}
& m^{2}-2 m+1-1-2=0 \\
& \left(\frac{-2}{2}\right)^{2}=1 \\
& \left(m^{2}-2 m+1\right)-3=0
\end{aligned}
$$

$$
\begin{aligned}
& (m-1)^{2}=3 \Rightarrow m-1= \pm \sqrt{3} \\
& m=1 \pm \sqrt{3}
\end{aligned}
$$

Two distinct roots

$$
m_{1}=1+\sqrt{3}, \quad m_{2}=1-\sqrt{3}
$$

A fundomatal solution set is

$$
y_{1}=e^{(1+\sqrt{3}) x} \quad, y_{2}=e^{(1-\sqrt{3}) x}
$$

The genera solution

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

There is only one real, double root, $m=\frac{-b}{2 a}$.
Use reduction of order to find the second solution to the equation (in standard form)

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad \text { given one solution } \quad y_{1}=e^{-\frac{b}{2 a} x} \\
& y_{2}=u y_{1} \quad u=\int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x \quad P(x)=\frac{b}{a} \\
& e^{-\int p(x) d x}=e^{\frac{-b}{a} x} \\
& -\int P(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x, e^{=e}
\end{aligned}
$$

$$
\begin{aligned}
\left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2} & =e^{2\left(\frac{-b}{2 a} x\right)}=e^{\frac{-b}{a} x} \\
u=\int \frac{e^{-\int \cos 2 x}}{y^{2}} d x & =\int \frac{e^{\frac{-b}{a} x}}{e^{-\frac{b}{2} x}} d x=\int d x=x \\
y_{2} & =u y_{1}=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

The ODE is $2^{\text {nd }}$ order, linear, homogeneous wi constant coefficients. The characteristic equation is

$$
\begin{aligned}
m^{2}+6 m+9 & =0 \\
(m+3)^{2} & =0 \Rightarrow m=-3 \text { doable root }
\end{aligned}
$$

A fundamental. solution set is

$$
y_{1}=e^{-3 x}, \quad y_{2}=x e^{-3 x}
$$

The general solution is $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$,

Apply) $y(0)=4, \quad y^{\prime}(x)=0$

$$
\begin{aligned}
& y^{\prime}(x)=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=4 \quad \Rightarrow \quad c_{1}=4 \\
& y^{\prime}(0)=-3 c_{1} e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 \cdot e^{0}=0 \\
&-3 c_{1}+c_{2}=0 \Rightarrow c_{2}=3 c_{1}=3(4)=12
\end{aligned}
$$

The solution to the IVP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

[^0]: ${ }^{1}$ We'll extend the result to higher order at the end of this sectionseptember 25, 2023

