September 28 Math 2306 sec. 51 Fall 2022

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example¹

Find a particular solution of the ODE

 $^{^1}$ We're only ignoring the y_c part to illustrate the process. @>+@>+@>+@>+@>+

y " = 0

Matching coefficients

$$4A = 8 \Rightarrow A-2$$

$$-4A+4B=1 \Rightarrow 4B=1+4A$$

$$B = \frac{1}{4}(1+4A)$$

$$= \frac{1}{4}(1+8) = \frac{9}{4}$$

$$yp = 2x + \frac{9}{4}$$
 is a particular

3/39

4/39

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

We found the particular solution

$$y_p=2x+\frac{9}{4}$$

by

- guessing that y_p is the same kind of function as g,
- setting it up with undetermined coefficients (A, B, etc.), and
- substituting it into the ODE to find the coefficients that work.

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

$$3(x) = 6e^{-3x} \text{ is on exponential}$$
Sut $y_P = Ae^{-3x}$. Sub into the $6DE$.
$$y_P'' = -3Ae^{-3x}$$

$$y_P'' = 9Ae^{-3x}$$

$$y_P'' - 4y_P' + 4y_P = 6e^{-3x}$$

$$9Ae^{-3x} - 4(-3Ae^{-3x}) + 4Ae^{-3x} = 6e^{-3x}$$

$$25 A e^{-3x} = 6 e^{-3x}$$

We found
$$y_p = \frac{6}{25} e^{-3x}$$

The Initial Guess Must Be General in Form

Find a particular solution to $y'' - 4y' + 4y = 16x^2$

Here
$$g(x) = 16x^2$$
. This can be thought of as O a monopold in x^2 or O a z^{nd} degree polynomial Thinking of g as a constant times x^2 . Set $yp = Ax^2$ Substitute $yp'' = 2A$ $yp'' - 4yp' + 4yp = 16x^2$

$$QA - Y(ZAx) + Y(Ax^{2}) = 16x^{2}$$

$$\frac{4Ax^{2} - 8Ax + 2A = 16x^{2} + 0x + 0}{2}$$

Matching gives 4A = 16 not possible A = 0 -8A = 0 2A = 0as A = 4 and A = 0contract both be true.

We didn't account for the like terms, 1x and constant that arise from differentiation. We should thing of g(x) = 16x as a 2nd degree polynomial.

Try Sp= Ax"+Bx+ C = > 4

Match

$$0 = 16$$

$$0 = 10$$

$$0 = 10$$

$$0 = 10$$

$$4B = 8A \implies B = 7A = 8$$
 $4C = -2A + 4B = -2(4) + 4(8) = 24$
 $4B = -2(4) + 4(8) = 24$

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A\sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x)$$
.

This would require (matching coefficients of sines and cosines)

$$-4A = 20$$
 and $-2A = 0$.

This is impossible as it would require -5 = 0!

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_p = A\sin(2x) + B\cos(2x).$$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

(a) g(x) = 1 (or really any nonzero constant)

(b)
$$g(x) = x - 7$$
 (1st degree polynomial)

(c)
$$g(x) = 5x^2$$
 (2nd degree polynomial)

(d)
$$g(x) = 3x^3 - 5$$
 (3rd degree polynomial)

(e)
$$g(x) = xe^{3x}$$
 (1st degree polynomial times e^{3x})

$$y_{p} = (A \times + B) e^{3x}$$

$$= A \times e^{3x} + B e^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 (linear combo of cosine and sine of $7x$)

$$y_{\ell} = A C_{s}(A \times) + B S_{s,n}(A \times)$$

(g) $g(x) = \sin(2x) - \cos(4x)$ (two linear combos of sine/cosine)

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2^{nd} degree poly times cosine)

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

(j) $g(x) = xe^{-x}\sin(\pi x)$ (linear combo of 1st poly times e^{-x} sine and 1st poly times e^{-x} cosine)