September 28 Math 2306 sec. 52 Fall 2022

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example¹

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

The left side is constant coefficient, and the right hand side g(x) = 8x + 1 is a **first degree polynomial**. We made a guess that the particular solution y_p was also a first degree polynomial.

 $y_p = Ax + B$ for A and B constants.

Subsitution led to finding the numbers

$$A = 2$$
 and $B = \frac{9}{4}$.

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

We found the particular solution

$$y_p = 2x + \frac{9}{4}$$

by

- guessing that y_p is the same kind of function as g,
- setting it up with undetermined coefficients (A, B, etc.), and
- substituting it into the ODE to find the coefficients that work.

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

$$g(x) = 6e^{3x} \quad a \text{ constant times } e^{3x}$$
Let $y_{p} = Ae^{3x}$. Substitute
 $y_{p}' = -3Ae^{3x}$. Substitute
 $y_{p}'' = -3Ae^{3x}$.
 $y_{e}'' = 9Ae^{3x}$.
 $y_{p}'' - 4y_{p}' + 4y_{p} = 6e^{3x}$.
 $q_{A}e^{-3x} - 4(-3Ae^{3x}) + 4Ae^{3x} = 6e^{-3x}$.

ASA
$$e^{-3x} = 6e^{-3x}$$

Matching gives $25A = 6$
 $\Rightarrow A = \frac{6}{25}$
We find $yr = \frac{6}{25}e^{-3x}$
 y_c solves the associated homogeneous ODE
 $y'' - 4y' + 4y = 0$
 y_c solves the nonhomogeneous egn .

September 28, 2022 5/37

596

The Initial Guess Must Be General in Form

Find a particular solution to $y'' - 4y' + 4y = 16x^2$ Here g (x) = 16x2. This can be classified in a couple of ways, O it's a monomial, constant times X2 Q it's a 2nd degree polynomial Considering a monomial, suppose we set yp= Ax2 yp'= ZA× yp"-4yp+4yp= 16x2 4" = 2A

September 28, 2022 6/37

We didn't account for x or constant terms. Consider grin=16x2 as a 2nd degree polynomial. Set yp = AX2+BX+C

イロト イ理ト イヨト イヨト 二臣

$$y_{p}' = 2A \times +B$$

$$y_{p}'' = 2A$$

$$y_{p}'' - 4y_{p}' + 4y_{p} = 16 \times^{2}$$

$$2A - 4(2A \times +8) + 4(A \times^{2} + B \times +C) = 16 \times^{2}$$

$$4A \times^{2} + (-8A + 4B) \times + (2A - 4B + 4C) = 16 \times^{2} + 0 \times +0$$
Match like terms
$$4A = 16 \implies A = 4$$

$$-8A + 4B = 0$$

$$2A - 4B + 4C = 0$$

$$A = 4 \times 4B + 4C = 0$$

イロン イ理 とく ヨン イヨン 二 ヨー

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A\sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x).$$

This would require (matching coefficients of sines and cosines)

$$-4A = 20$$
 and $-2A = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Ξ
September 28, 2022

11/37

This is impossible as it would require -5 = 0!

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_p = A\sin(2x) + B\cos(2x).$$

イロト 不得 トイヨト イヨト 二日

September 28, 2022

12/37

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ September 28, 2022

13/37

(a) g(x) = 1 (or really any nonzero constant)

yp=A

(b) g(x) = x - 7 (1st degree polynomial)

 $y_p = A x + B$

(c) $g(x) = 5x^2$ (2^{*nd*} degree polynomial)

(d) $g(x) = 3x^3 - 5$ (3rd degree polynomial)

$$y_{P} = Ax^{3} + Bx^{2} + Cx + D$$

September 28, 2022 14/37

(e) $g(x) = xe^{3x}$ (1st degree polynomial times e^{3x})

$$y_{p} = (A \times + B) e^{3 \times}$$
$$= A_{\times} e^{3 \times} + B e^{3 \times}$$

(f) $g(x) = \cos(7x)$ (linear combo of cosine and sine of 7x)

$$y_{p} = A c_{s}(x) + B Sin(x)$$

September 28, 2022 15/37

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

(g) $g(x) = \sin(2x) - \cos(4x)$ (two linear combos of sine/cosine)

 $\mathcal{Y}_{P} = A \operatorname{Sin}(2x) + B \operatorname{Cos}(2x) + C \operatorname{Sin}(u_{X}) + D \operatorname{Cs}(u_{X})$

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2nd degree poly times cosine)

$$y_{p} = (A_{x}^{2} + B_{x} + C) S_{n}(3_{x}) + (D_{x}^{2} + E_{x} + F) C_{s}(3_{x})$$

September 28, 2022

16/37

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

$$y_p = A \stackrel{\times}{e} C_{ss}(z_X) + B \stackrel{\times}{e} S_{m}(z_X)$$

(j) $g(x) = xe^{-x} \sin(\pi x)$ (linear combo of 1^{*st*} poly times e^{-x} sine and 1^{*st*} poly times e^{-x} cosine)

$$y_{p} = (A \times + B) e^{-x} S_{n}(\pi \times) + (C \times + D) e^{-x} G_{n}(\pi \times)$$

September 28, 2022 17/37

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQO

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x) + \dots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x)$
 y_{p_2} solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_2(x)$,
and so forth.

イロト 不得 トイヨト イヨト

September 28, 2022

18/37

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

Find
$$y_{P1}$$
, that solver
 $y'' - 4y' + 4y = 6e^{3x}$
we know $y_{P1} = Ae^{-3x}$
Find y_{P2} that solves
 $y'' - 4y' + 4y = 16x^{2}$

September 28, 2022 19/37

 $y_{P_z} = B_{\times}^2 + C_{\times} + D$

The form for yp is

$$y_p = Ae^{-3x} + Bx^2 + Cx + D$$

▲□▶ ▲●▶ ▲ ■▶ ▲ ■ ▶ ● ■ の Q @ September 28, 2022 20/37