September 29 Math 2306 sec. 51 Fall 2021

Question: Could the method of undetermined coefficients be used to find particular solutions to the ODEs

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} ?
$$

(Why or why not?) \downarrow

Section 10: Variation of Parameters

We're still interested in linear, nonhomogeneous ODEs. Something of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

The previous method (undetermined coefficients) can only be applied if the left side is constant coefficient and the right side is a of a certain type.

If we want to solve an equation that doesn't have a constant coefficient left

$$
\text { e.g. } x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} \text {, }
$$

or doesn't have the correct sort of right hand side

$$
\text { e.g. } y^{\prime \prime}+y=\tan x \text {, }
$$

we'll need another solution process.

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
we hove two
unknowns u_{1} and U_{2} but only one equation, the ODE.
well introduce A $z^{\text {nd }}$ equation.

Sub yep into the $O D E$.

$$
\begin{aligned}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}
\end{aligned}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

Assume $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$
This will be our $z^{\text {nd }}$ equation.

$$
\begin{aligned}
& \text { so } \quad y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
& y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} \\
& y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=g(x) \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}\right)=g(x)
\end{aligned}
$$

Collect $u_{1}^{\prime}, u_{2}^{\prime}, w_{1}$ and u_{2}

$$
\begin{array}{r}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u_{1} \\
0^{\prime \prime}+\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right) u_{2}=g(x) \\
0^{\prime \prime} \\
y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}^{\prime}=0 \text { for } i=1 \text { or } 2
\end{array}
$$

This reduces to

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=S(x)
$$

we have the system of equations

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

weill solve this using Crammer's rube.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right]} \\
& \text { Let } w_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=-g y_{2} \\
& \text { and } w_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=y_{1} g \\
& \text { Let } w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1} & y_{2}^{\prime}
\end{array}\right| \text { the wronskion of } y_{1}, y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{w_{1}}{w}=\frac{-g y_{2}}{w} \\
& u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{y_{1} g}{w} \\
& u_{1}=\int \frac{-g(x) y_{2}(x)}{w} d x \\
& u_{2}=\int \frac{g(x) y_{1}(x)}{w} d x
\end{aligned}
$$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.

$$
y=y_{c}+y_{p}
$$

Find $y c: y_{c}{ }^{\prime \prime}+y_{c}=0$
Charact en $m^{2}+1=0$

$$
\begin{array}{r}
m^{2}=-1 \Rightarrow m= \pm i \\
\alpha=0, \beta=i
\end{array}
$$

$$
\begin{aligned}
y_{1}=\cos x & , y_{2}
\end{aligned}=\sin x .\left\{\begin{array}{c}
c_{1} \cos x+c_{2} \sin x
\end{array}\right.
$$

Using Variation of parameters, we need w and g.

$$
\begin{aligned}
g(x) & =\tan x, w \\
= & \left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x+\sin ^{2} x=1 \\
y_{1} & =\cos x, y_{2}=\sin x \\
u_{1} & =\int \frac{-g y_{2}}{w} d x=\int \frac{-\tan x \sin x}{1} d x \\
& =-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x \\
& =\int(\cos x-\sec x) d x \\
u_{1} & =\sin x-\ln |\sec x+\tan x|
\end{aligned}
$$

$$
\begin{aligned}
& u_{2}=\int \frac{g(x) y_{1}(x)}{w^{\prime}} d x=\int \frac{\tan x \cos x}{1} d x \\
& u_{2}=\int \sin x d x=-\cos x \\
& y_{1}=\cos x \quad y_{2}=\sin x \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
&=(\sin x-\ln |\sec x+\ln x|) \cos x-\cos x \sin x \\
&=\sin x \cos x-\cos x \ln |\sec x+\tan x|-\cos x \sin x \\
& y_{p}=-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The gereral solution

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

$$
y^{\prime \prime}+y=\tan x
$$

