
September 29 Math 2306 sec. 51 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We are considering the second order, linear, homogeneous ODE with
constant coefficients

ay ′′ + by ′ + cy = 0.

The function y = emx is a solution provided m is a solution of the
characteristic equation

am2 + bm + c = 0.

We have to consider three cases,
I Case I: there are two different real roots, m1 6= m2,
I Case II: there is one repeated real root, m1 = m2 = m,
I Case III: the roots are complex conjugates m = α± iβ with β > 0.
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Case I: Two distinct real roots

ay ′′ + by ′ + cy = 0, where b2 − 4ac > 0.

There are two different roots m1 and m2. A fundamental solution
set consists of

y1 = em1x and y2 = em2x .

The general solution is

y = c1em1x + c2em2x .
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Case II: One repeated real root

ay ′′ + by ′ + cy = 0, where b2 − 4ac = 0

If the characteristic equation has one real repeated root m, then
a fundamental solution set to the second order equation consists
of

y1 = emx and y2 = xemx .

The general solution is

y = c1emx + c2xemx .
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Case III: Complex conjugate roots

ay ′′ + by ′ + cy = 0, where b2 − 4ac < 0

The two roots of the characteristic equation will be

m1 = α+ iβ and m2 = α− iβ where i2 = −1.

We want our solutions in the form of real valued functions. We start by
writing a pair of solutions

Y1 = e(α+iβ)x = eαxeiβx , and Y2 = e(α−iβ)x = eαxe−iβx .

We will use the principle of superposition to write solutions y1 and
y2 that do not contain the complex number i .
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Deriving the solutions Case III
Recall Euler’s Formula1 : eiθ = cos θ + i sin θ.

Y1 = eαxeiβx

Y2 = eαxe−iβx

1As the sine is an odd function e−iθ = cos θ − i sin θ.
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Case III: Complex conjugate roots

ay ′′ + by ′ + cy = 0, where b2 − 4ac < 0

Let α be the real part of the complex roots and β > 0 be the
imaginary part of the complex roots. Then a fundamental solution
set is

y1 = eαx cos(βx) and y2 = eαx sin(βx).

The general solution is

y = c1eαx cos(βx) + c2eαx sin(βx).
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Example

Find the general solution of
d2x
dt2 + 4

dx
dt

+ 6x = 0.
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Higer Order Linear Constant Coefficient ODEs

I The same approach applies. For an nth order equation, we obtain
an nth degree polynomial.

I Complex roots must appear in conjugate pairs (due to real
coefficients) giving a pair of solutions eαx cos(βx) and eαx sin(βx)
for each pair of complex roots.

I It may require a computer algebra system to find the roots for a
high degree polynomial.
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Higer Order Linear Constant Coefficient ODEs:
Repeated roots.

I For an nth degree polynomial, m may be a root of multiplicity k
where 1 ≤ k ≤ n.

I If a real root m is repeated k times, we get k linearly independent
solutions

emx , xemx , x2emx , . . . , xk−1emx

or in conjugate pairs cases 2k solutions

eαx cos(βx), eαx sin(βx), xeαx cos(βx), xeαx sin(βx), . . . ,

xk−1eαx cos(βx), xk−1eαx sin(βx)
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Example

Find the general solution of the ODE.

y ′′′−3y ′′+3y ′−y = 0
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Example

Find the general solution of the ODE.

y (4)+3y ′′−4y = 0
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