September 29 Math 2306 sec. 51 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We are considering the second order, linear, homogeneous ODE with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

The function $y=e^{m x}$ is a solution provided m is a solution of the characteristic equation

$$
a m^{2}+b m+c=0 .
$$

We have to consider three cases,

- Case I: there are two different real roots, $m_{1} \neq m_{2}$,
- Case II: there is one repeated real root, $m_{1}=m_{2}=m$,
- Case III: the roots are complex conjugates $m=\alpha \pm i \beta$ with $\beta>0$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x}
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0
$$

The two roots of the characteristic equation will be

$$
m_{1}=\alpha+i \beta \quad \text { and } \quad m_{2}=\alpha-i \beta \quad \text { where } \quad i^{2}=-1
$$

We want our solutions in the form of real valued functions. We start by writing a pair of solutions

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x}
$$

We will use the principle of superposition to write solutions y_{1} and y_{2} that do not contain the complex number i.

Deriving the solutions Case III
Recall Euler's Formula ${ }^{1}: e^{i \theta}=\cos \theta+i \sin \theta$.

$$
\begin{aligned}
Y_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
Y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Set $\quad y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x)$

$$
y_{2}=\frac{1}{2 i}\left(y_{1}-y_{2}\right)=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
$$

${ }^{1}$ As the sine is an odd function $e^{-i \theta}=\cos \theta-i \sin \theta$.

In the complex case, we must identif, the α and β.

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and $\beta>0$ be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example

Find the general solution of $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0$.
The equation is linear, homogeneous, wi constant coed. The cheractairtic equation is

$$
m^{2}+4 m+6=0
$$

Find the roots

$$
\begin{aligned}
m & =\frac{-4 \pm \sqrt{4^{2}-4(1)(6)}}{2(1)}=\frac{-4 \pm \sqrt{16-24}}{2} \\
& =\frac{-4 \pm \sqrt{-8}}{2}=\frac{-4 \pm 2 \sqrt{2} i}{2} \\
& =-2 \pm \sqrt{2} i
\end{aligned}
$$

Complex case w| $\alpha=-2$ and $\beta=\sqrt{2}$. A fundamental solution set is

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), \quad x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The severe solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

$3^{\text {rd }}$ order, linear, homogeneous, wi constant colt.
The characteristic equation is

$$
\begin{aligned}
& m^{3}-3 m^{2}+3 m-1=0 \\
& (m-1)^{3}=0 \Rightarrow m=1 \text { trope root }
\end{aligned}
$$

A fundamat d solution set is

$$
y_{1}=e^{1 x}, y_{2}=x e^{1 x}, y_{3}=x^{2} e^{1 x}
$$

The general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

$$
\begin{aligned}
& m-1 m^{m^{2}-2 m+1} 3 m^{2}+3 m-1 \\
& =m\left(m^{2}-2 m+1\right)-\left(m^{2}-2 m+1\right) \\
& =m(m-1)^{2}-1(m-1)^{2}=(m-1)(m-1)^{2} \\
& =m+m-m^{2}+2 m-1
\end{aligned}
$$

Example
Find the general solution of the ODE.

$$
y^{(4)}+3 y^{\prime \prime}-4 y=0
$$

The char. equ is $m^{4}+3 m^{2}-4=0$

$$
\begin{aligned}
&\left(m^{2}+4\right)\left(m^{2}-1\right)=0 \\
&\left(m^{2}+4\right)(m-1)(m+1)=0 \\
& m^{2}+4=0 \Rightarrow m^{2}=-4 \Rightarrow m= \pm \sqrt{-4}= \pm 2 i=0 \pm 2 i \\
& m-1=0 \Rightarrow m=1 \\
& m+1=0 \Rightarrow m=-1 \\
& m_{1}, 2= \pm 2 i, y_{1}=e^{0 x} \operatorname{css}(2 x), y_{2}=e^{0 x} \sin (2 x)
\end{aligned}
$$

$$
y_{3}=e^{1 x}, y_{4}=e^{-1 x}
$$

The gev. solution

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} e^{x}+c_{4} e^{-x}
$$

