September 29 Math 2306 sec. 52 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We are considering the second order, linear, homogeneous ODE with constant coefficients

$$ay'' + by' + cy = 0.$$

The function $y = e^{mx}$ is a solution provided *m* is a solution of the **characteristic equation**

$$am^2+bm+c=0.$$

We have to consider three cases,

- **Case I:** there are two different real roots, $m_1 \neq m_2$,
- **Case II:** there is one repeated real root, $m_1 = m_2 = m$,
- **Case III:** the roots are complex conjugates $m = \alpha \pm i\beta$ with $\beta > 0$.

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

September 27, 2023 2/19

イロト イポト イヨト イヨト

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

September 27, 2023 3/19

< ロ > < 同 > < 回 > < 回 >

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

The two roots of the characteristic equation will be

$$m_1 = \alpha + i\beta$$
 and $m_2 = \alpha - i\beta$ where $i^2 = -1$.

We want our solutions in the form of <u>real valued</u> functions. We start by writing a pair of solutions

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x}$.

September 27, 2023

4/19

We will use the **principle of superposition** to write solutions y_1 and y_2 that do not contain the complex number *i*.

Deriving the solutions Case III

Recall Euler's Formula¹ : $e^{i\theta} = \cos \theta + i \sin \theta$.

$$Y_{1} = e^{\alpha x} e^{i\beta x} = e^{\alpha x} \left(C_{0s}(\beta x) + i S_{1n}(\beta x) \right)$$

$$= e^{\alpha x} C_{0s}(\beta x) + i e^{\beta x} S_{1n}(\beta x)$$

$$Y_{2} = e^{\alpha x} e^{-i\beta x} = e^{\alpha x} \left(C_{0s}(\beta x) - i S_{1n}(\beta x) \right)$$

$$= e^{\alpha x} C_{0s}(\beta x) - i e^{\beta x} S_{1n}(\beta x)$$

$$S_{1} = \frac{1}{2}(Y_{1} + Y_{2}) = \frac{1}{2}(2i e^{\alpha x} S_{1n}(\beta x)) = e^{\beta x} S_{1n}(\beta x)$$

$$Y_{2} = \frac{1}{2i}(Y_{1} - Y_{2}) = \frac{1}{2i}(2i e^{\alpha x} S_{1n}(\beta x)) = e^{\alpha x} S_{1n}(\beta x)$$

¹As the sine is an odd function $e^{-i\theta} = \cos \theta - i \sin \theta$.

In the complex case, we must identify

the of and B parts.

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and $\beta > 0$ be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

September 27, 2023 7/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Find the general solution of
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0.$$

The ode is linear, honogeneous w) constant
coefficients. The characteristic equation is
 $m^2 + 4m + 6 = 0$
Quadratic formula: $m = \frac{-4 \pm \sqrt{4^2 - 4(1)(6)}}{2(1)} = \frac{-4 \pm \sqrt{-9}}{2}$
 $= -\frac{4 \pm 2\sqrt{2}i}{2} = -2 \pm \sqrt{2}i$
Confident space : $m^2 + 4m + 4 - 4 + 6 = 0$
 $(m+2)^2 + 2 = 0$

September 27, 2023 8/19

$$m_{+2}^{2} = -2$$

$$m_{+2} = \pm J_{-2} = \pm J_{-2}^{2} i$$

$$m_{-2} = \pm J_{-2}^{2} i$$

$$X_1 = e^{-2t} \cos(52t), \quad X_2 = e^{-2t} \sin(52t)$$

< □ ▶ < 圕 ▶ < ≣ ▶ < ≡ ▶ < ≡ ♪ < ⊂ September 27, 2023 9/19

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
September 27, 2023

10/19

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □ September 27, 2023

11/19

Example

Find the general solution of the ODE.

$$y'''-3y''+3y'-y=0$$
The ODE is linear, homogeneous will constant coef.
The Characteristic equation is
 $m^{3}-3m^{2}+3m-1=0$
 $(m-1)^{3}=0 \implies m=1$ triple root
A fundamental solution set is
 $y_{1}=e^{1x}$, $y_{2}=xe^{1x}$, $y_{3}=x^{2}e^{1x}$

<ロト <回 > < 回 > < 回 > < 回 > … 回

The general solution $y = C_1 e^{x} + C_2 x e^{x} + C_3 x^2 e^{x}$

Example

Find the general solution of the ODE.

$$y^{(4)} + 3y'' - 4y = 0$$
The 60c is linear, honoseneous, w) constant
coet. The characteristic eqn is

$$m^{4} + 3m^{2} - 4 = 0$$

$$(m^{2} + 4) \chi(m^{2} - 1) = 0$$

$$(m^{2} + 4) \chi(m^{2} - 1) = 0$$

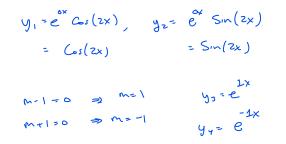
$$(m^{2} + 4) \chi(m^{2} - 1) = 0$$

$$m^{2} + 4 = 0 \implies m^{2} = -4 \implies m = \pm \sqrt{-4} = \pm 2i = 0 \pm 2i$$
Complex with $q = 0$, $\beta = 2$

$$(p + 4) = 2i = 2i = 0$$

$$(p + 4) = 2i = 2i = 0$$

$$(p + 4) = 2i = 2i = 0$$



The general solution $y = C_1 (c_0(2x) + C_2 S_1(2x) + C_3 e^{X} + C_2 e^{X})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●