September 29 Math 3260 sec. 51 Fall 2025

3.8 Matrix Equations

We'll consider two types of matrix equations.

Matrix-Vector Equation

$$A\vec{x} = \vec{y}$$

The matrix A and the vector \vec{y} are known. The variable to be solved for is the vector \vec{x} .

Matrix-Matrix Equation

$$AX = Y$$

The matrices A and Y are known. The variable to be solved for is the matrix X.

Matrix-Vector Equation

Suppose $A = [a_{ij}]$ is an $m \times n$ matrix, and let $\vec{y} = \langle y_1, y_2, \dots, y_m \rangle$ be a vector in R^m .

$$A\vec{x} = \vec{y} \tag{1}$$

- Any vector $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$ in R^n that satisfies equation (1) is called a **solution**.
- ▶ The **solution set** of equation (1) is the set of all vectors \vec{x} in R^n that are solutions.
- Equation (1) may have no solution, exactly one solution, or infinitely many solutions.

Linear System

Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$ and $\vec{y} = \langle y_1, y_2 \rangle$. Identify the entry equations of $A\vec{x} = \vec{y}$ where $\vec{x} = \langle x_1, x_2, x_3 \rangle$.

$$A\vec{x}$$
: $\langle Rou, (A) \cdot \vec{x} \rangle Row_2(A) \cdot \vec{x} \rangle = \langle y_1, y_2 \rangle$

$$= \langle a_{11} \times_1 + a_{12} \times_2 + a_{13} \times_3 \rangle a_{21} \times_1 + a_{22} \times_2 + a_{23} \times_3 \rangle$$

$$= \langle y_1, y_2 \rangle$$
equate corresponding entries

$A\vec{x} = \vec{y}$

The vector \vec{x} is a solution of the matrix-vector equation $A\vec{x} = \vec{y}$ if and only if (x_1, x_2, \dots, x_n) is a solution of the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_m$.

Note this is the system having coefficient matrix A and augmented matrix $\hat{A} = [A | \vec{y}]$.

Theorem

Suppose that A is an $m \times n$ matrix and that \vec{y} is a vector in R^m and consider the matrix–vector equation

$$A\vec{x} = \vec{y}$$
.

Let \hat{A} be the augmented matrix $\hat{A} = [A \mid \vec{y}]$.

- 1. If the rightmost column of \hat{A} is a pivot column of \hat{A} , then $A\vec{x} = \vec{y}$ is inconsistent.
- 2. If the rightmost column of \widehat{A} is not a pivot column of \widehat{A} , then $A\vec{x} = \vec{y}$ is consistent.

Moreover, if $A\vec{x} = \vec{y}$ is consistent then

- 1. If every column of A is a pivot column of A, then $A\vec{x} = \vec{y}$ has a unique solution.
- 2. If at least one column of *A* is not a pivot column of *A*, then $A\vec{x} = \vec{y}$ has infinitely many solutions.

Example: Consider $A\vec{x} = \vec{y}$ for A and \vec{y} given.

ls $A\vec{x} = \vec{y}$ consistent or inconsistent?

$$\begin{bmatrix} A \mid y \end{bmatrix} = \begin{bmatrix} 3 & 3 & 5 \\ 4 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 7/q \\ 0 & 1 & | & 7/q \end{bmatrix}$$
Gosishunt

Example: Consider $A\vec{x} = \vec{y}$ for \vec{A} and \vec{y} given.

(b)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \\ 3 & 4 \end{bmatrix}$$
, and $\vec{y} = \langle 5, 2, 0 \rangle$

$$A \Rightarrow \begin{cases} A \Rightarrow A \end{cases}$$
If $\vec{x} \in R^n$, what is n ?

► Is $A\vec{x} = \vec{y}$ consistent or inconsistent?

$$[A] = \begin{bmatrix} 2 & 1 & | & 5 \\ -1 & -2 & | & 2 \\ 3 & 4 & | & 0 \end{bmatrix} \xrightarrow{\text{rad}} \begin{bmatrix} 1 & 0 & | & 4 \\ 0 & 1 & | & -3 \\ 0 & 0 & | & 0 \end{bmatrix}$$
Consistant

RNot

RNot

Example: Consider $A\vec{x} = \vec{y}$ for \vec{A} and \vec{y} given.

(c)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \\ 3 & 4 \end{bmatrix}$$
, and $\vec{y} = \langle 2, 1, 2 \rangle$

- ▶ If $\vec{x} \in R^n$, what is n? n = 2
- ls $A\vec{x} = \vec{y}$ consistent or inconsistent?