September 29 Math 3260 sec. 53 Fall 2025

3.8 Matrix Equations

We'll consider two types of matrix equations.

Matrix-Vector Equation

$$A\vec{x} = \vec{y}$$

The matrix A and the vector \vec{y} are known. The variable to be solved for is the vector \vec{x} .

Matrix-Matrix Equation

$$AX = Y$$

The matrices A and Y are known. The variable to be solved for is the matrix X.

Matrix-Vector Equation

Suppose $A = [a_{ij}]$ is an $m \times n$ matrix, and let $\vec{y} = \langle y_1, y_2, \dots, y_m \rangle$ be a vector in R^m .

$$A\vec{x} = \vec{y} \tag{1}$$

- Any vector $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$ in R^n that satisfies equation (1) is called a **solution**.
- ▶ The **solution set** of equation (1) is the set of all vectors \vec{x} in R^n that are solutions.
- Equation (1) may have no solution, exactly one solution, or infinitely many solutions.

$A\vec{x} = \vec{y}$

The vector \vec{x} is a solution of the matrix-vector equation $A\vec{x} = \vec{y}$ if and only if (x_1, x_2, \dots, x_n) is a solution of the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_m$.

Note this is the system having coefficient matrix A and augmented matrix $\hat{A} = [A | \vec{y}]$.

Theorem

Suppose that A is an $m \times n$ matrix and that \vec{y} is a vector in R^m and consider the matrix–vector equation

$$A\vec{x} = \vec{y}$$
.

Let \widehat{A} be the augmented matrix $\widehat{A} = [A \mid \vec{y}]$.

- 1. If the rightmost column of \hat{A} is a pivot column of \hat{A} , then $A\vec{x} = \vec{y}$ is inconsistent.
- 2. If the rightmost column of \widehat{A} is not a pivot column of \widehat{A} , then $A\vec{x} = \vec{y}$ is consistent.

Moreover, if $A\vec{x} = \vec{y}$ is consistent then

- 1. If every column of A is a pivot column of A, then $A\vec{x} = \vec{y}$ has a unique solution.
- 2. If at least one column of *A* is not a pivot column of *A*, then $A\vec{x} = \vec{y}$ has infinitely many solutions.

Example: Consider $A\vec{x} = \vec{y}$ for A and \vec{y} given.

(a)
$$A = \begin{bmatrix} 3 & 3 \\ 4 & -2 \end{bmatrix}$$
, and $\vec{y} = \langle 5, 2 \rangle$

- If $\vec{x} \in R^n$, what is n?
- ls $A\vec{x} = \vec{y}$ consistent or inconsistent?

$$[A | y] = \begin{bmatrix} 3 & 3 & | & 5 \\ 4 & -2 & | & 2 \end{bmatrix} \xrightarrow{\text{met}} \begin{bmatrix} 1 & 0 & | & 8/q \\ 0 & | & + 1/q \end{bmatrix}$$
The equation is
$$\begin{bmatrix} 3 & 3 & | & 5 \\ 0 & | & + 1/q \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 & | & 5 \\ 0 & | & + 1/q \end{bmatrix}$$

Example: Consider $A\vec{x} = \vec{y}$ for A and \vec{y} given.

(b)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \\ 3 & 4 \end{bmatrix}$$
, and $\vec{y} = \langle 5, 2, 0 \rangle$

$$A = \begin{bmatrix} \vec{y} & \vec{y} & \vec{y} \\ \vec{y} & \vec{y} \end{bmatrix}$$
what is $\vec{y} = \vec{y}$ consistent or inconsistent?

▶ If $\vec{x} \in R^n$, what is n? n = 2

- ls $A\vec{x} = \vec{y}$ consistent or inconsistent?

$$\begin{bmatrix} A \mid i_{0} \end{bmatrix} = \begin{bmatrix} 2 & 1 & | & s \\ -1 & -2 & | & z \\ 3 & 4 & | & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & | & u \\ 0 & 1 & | & -3 \\ 0 & 0 & | & 0 \end{bmatrix}$$

The equation is consistent

Example: Consider $A\vec{x} = \vec{y}$ for \vec{A} and \vec{y} given.

(c)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \\ 3 & 4 \end{bmatrix}$$
, and $\vec{y} = \langle 2, 1, 2 \rangle$

- ▶ If $\vec{x} \in R^n$, what is $n? \land = 2$
- ls $A\vec{x} = \vec{y}$ consistent or inconsistent?

$$\begin{bmatrix} A \mid t_0 \end{bmatrix} = \begin{bmatrix} z & 1 & | & z \\ -1 & -z & | & z \\ 3 & 4 & | & z \end{bmatrix} \xrightarrow{\text{CNef}} \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

The equation is

Pivolina

Example

Find the solution set of the equation $A\vec{x} = \vec{y}$ where $A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & -3 & 0 \end{bmatrix}$ and $\vec{y} = \langle 1, -1 \rangle$.

$$\left[\begin{array}{c|cccc} 2 & 0 & \frac{2}{3} & \frac{3}{2} \\ 0 & 1 & \frac{3}{2} & \frac{3}{2} \end{array}\right]$$

$$\frac{1}{2}R_{1} \Rightarrow R_{1} \qquad \left[\begin{array}{ccc} 1 & 0 & \frac{3}{5} & \sqrt{\frac{1}{5}} \\ 0 & 1 & \frac{4}{5} & \frac{3}{5} \end{array}\right]$$

$$\vec{X} = (X_1, X_2, X_3)$$
, $X_1 = \frac{1}{5} - \frac{3}{5} X_3$
 $X_2 = \frac{3}{5} - \frac{4}{5} X_3$
 X_3 is thee

A solution

$$\vec{\chi} = \left\langle \frac{1}{5} - \frac{3}{5} \times_3 , \frac{3}{5} - \frac{4}{5} \times_3 , \times_3 \right\rangle$$

0 7 7 2 W

$$\vec{\chi}$$
: $(\frac{1}{5}, \frac{3}{5}, 0) + (\frac{3}{5}, \frac{4}{5}, \frac{1}{5}, 1)$
 $(\frac{1}{5}, \frac{3}{5}, 0) + (\frac{3}{5}, \frac{4}{5}, \frac{1}{5}, 1)$

We want to keep in mind that since the equation was presented as a matrix-vector equation, the solution should be given in the vector format (not just the parametric--list--format).