September 30 Math 2306 sec. 52 Fall 2022

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Basics of the Method

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

- Confirm the left is constant coefficient.
- Identify what type of function g is.
- Assume y_{p} is the same type.**
- Remember that polynomials include all decending powers, and sines and cosines go together.
- The principle of superposition can be used if the right side is a sum of different kinds of g 's.
**This may need some modification depending on the homogeneous equation as we'll see shortly

The Superposition Principle

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_{p} by considering separate problems

$$
\begin{aligned}
& y_{p_{1}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x) \\
& y_{p_{2}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{2}(x)
\end{aligned}
$$

and so forth.
Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}$.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

The principle of superposition says that we can consider the problem in parts.

1) Find $y_{p_{1}}$ solving $y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}$

$$
y_{p_{1}}=A e^{-3 x}
$$

2) Find $y_{p_{2}}$ solving $y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}$

$$
y_{p_{2}}=B x^{2}+C x+D
$$

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

A Glitch!
What happens if the assumed form for y_{p} is part ${ }^{1}$ of y_{c} ? Consider applying the process to find a particular solution to the ODE

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime} & =3 e^{2 x} \\
g(x) & =3 e^{2 x} \quad \text { a constant times } e^{2 x} \\
\text { set } \quad y_{p} & =A e^{2 x} \quad \text { sub. } \\
y_{p}^{\prime} & =2 A e^{2 x} \quad y_{p}^{\prime \prime}-2 y_{p}^{\prime}=3 e^{2 x} \\
y_{p}^{\prime \prime}=4 A e^{2 x} \quad 4 A e^{2 x}-2\left(2 A e^{2 x}\right) & =3 e^{2 x} \\
0 & =3 e^{2 x}
\end{aligned}
$$

${ }^{1}$ A term in $g(x)$ is contained in a fundamental solution set of the associated homogeneous equation.

This is false for any choice of A.
Our guess for ye is part of ye.
we can try to salvage the method by including a factor of x.

$$
y^{\prime \prime}-2 y^{\prime}=3 e^{2 x}
$$

set

$$
\begin{aligned}
y_{p} & =\left(A e^{2 x}\right) x \\
y_{p} & =A x e^{2 x} \operatorname{sub} \\
y_{p}^{\prime} & =A e^{2 x}+2 A x e^{2 x} \\
y_{p}^{\prime \prime} & =2 A e^{2 x}+2 A e^{2 x}+4 A x e^{2 x} \\
& =4 A e^{2 x}+4 A x e^{2 x} \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}=3 e^{2 x}
\end{aligned}
$$

September 29, $2022 \quad 6 / 39$

$$
4 A e^{2 x}+4 A x e^{2 x}-2\left(A e^{2 x}+2 A x e^{2 x}\right)=3 e^{2 x}
$$

Collect like terms

$$
\begin{aligned}
x e^{2 x}(4 A-4 A)+e^{2 x}(4 A-2 A) & =3 e^{2 x} \\
0^{\prime \prime} \quad 2 A e^{2 x} & =3 e^{2 x} \\
\Rightarrow A & =\frac{3}{2}
\end{aligned}
$$

Hence $y_{p}=\frac{3}{2} x e^{2 x}$
$y^{\prime \prime}-2 y^{\prime}=3 e^{2 x}$ Lt find y_{c}
y_{c} solus $y^{\prime \prime}-2 y^{\prime}=0$

The characteristic egn is

$$
m^{2}-2 m=0 \Rightarrow m(m-2)=0
$$

$m=0$ or $m=2$ two red roots

$$
\begin{aligned}
& y_{1}=e^{0 x}=1, y_{2}=e^{2 x} \\
& \text { so } y_{c}=c_{1}+c_{2} e^{2 x}
\end{aligned}
$$

The general solution is $y=c_{1}+c_{2} e^{2 x}+\frac{3}{2} x e^{2 x}$

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Case II Examples
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find $y_{c}: y_{c}$ solves $y^{\prime \prime}-2 y^{\prime}+y=0$
Charactenstic eqn: $\quad m^{2}-2 m+1=0$

$$
\begin{aligned}
& (m-1)^{2}=0 \Rightarrow m=1 \begin{array}{c}
\text { double } \\
\text { root }
\end{array} \\
& y_{1}=e^{1 x}, y_{2}=x e^{x} \\
& y_{c}=c_{1} e^{x}+c_{2} x e^{x} \\
& \text { September 29, 2022 } \\
& 11 / 39
\end{aligned}
$$

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find y_{p} : $\quad g(x)=-4 e^{x} \quad \operatorname{const} \operatorname{tin}^{2} e^{x}$

$$
\begin{aligned}
& y_{p}=A e^{x} \text { nope! } \\
& y_{p}=\left(A e^{x}\right) x=A x e^{x} \text { rope! } \\
& y_{p}=\left(A e^{x}\right) x^{2}=A x^{2} e^{x} \text { yep! }
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =A x^{2} e^{x} \quad \text { sub. } \\
y_{p}^{\prime} & =2 A x e^{x}+A x^{2} e^{x} \\
y_{p}^{\prime \prime} & =2 A e^{x}+2 A x e^{x}+2 A x e^{x}+A x^{2} e^{x} \\
& =2 A e^{x}+4 A x e^{x}+A x^{2} e^{x}
\end{aligned}
$$

September 29, $2022 \quad 12 / 39$

$$
\begin{gathered}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=-4 e^{x} \\
2 A e^{x}+4 A x e^{x}+A x^{2} e^{x}-2\left(2 A x e^{x}+A x^{2} e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{gathered}
$$

collect like terms $e^{x}, x e^{x}, x^{2} e^{x}$

$$
\begin{aligned}
x^{2} e^{x}(\underbrace{A-2 A+A}_{0_{0}^{\prime \prime}})+x e^{x}(\underbrace{4 A-4 A}_{0^{\prime \prime}}) & +e^{x}(2 A) \\
& 2 A e^{x}=-4 e^{x} \\
& \Rightarrow A=-2
\end{aligned}
$$

Hence $y_{p}=-2 x^{2} e^{x}$
From before $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$

The genera solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

