September 3 Math 2306 sec. 54 Fall 2021

Section 5: First Order Equations Models and Applications

Figure: We've seen exponential growth/decay and simple linear circuits (RC or LR)

Example

A 200 volt battery is applied to an RC series circuit with resistance 1000Ω and capacitance $5 \times 10^{-6} f$. Find the charge $q(t)$ on the capacitor if $i(0)=0.4 \mathrm{~A}$. Determine the charge as $t \rightarrow \infty$.

The model for the RC circuit is

$$
R \frac{d q}{d t}+\frac{1}{C} q=E(t) .
$$

The ODE for this problem ended up in standard for as

$$
\frac{d q}{d t}+200 q=\frac{1}{5} \quad \text { with the condition } \quad q^{\prime}(0)=\frac{2}{5} .
$$

Hece $P(t)=200, \mu=e^{\int P(t) d t}=e^{\int 200 d t}=e^{200 t}$

$$
e^{200 t}\left(g^{\prime}+200 q\right)=\frac{1}{5} e^{200 t}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{200 t} q\right)=\frac{1}{5} e^{200 t} \\
& \int \frac{d}{d t}\left(e^{200 t} \cdot q\right) d t=\int \frac{1}{5} e^{200 t} d t \\
& e^{200 t} q=\frac{1}{1000} e^{200 t}+k
\end{aligned}
$$

Hence $q(t)=\frac{1}{1000}+k e^{-200 t}$
weill find k using $g^{\prime}(0)=\frac{2}{5}$

$$
\begin{aligned}
& q^{\prime}(t)=-200 k e^{-200 t} \\
& q^{\prime}(0)=-200 k e^{0}=\frac{2}{5}
\end{aligned}
$$

$$
n=\frac{2}{5(-200)}=\frac{-1}{500}
$$

The charse on the capacitos

$$
q(t)=\frac{1}{1000}-\frac{1}{500} e^{-200 t}
$$

$$
\lim _{t \rightarrow \infty} q(t)=\frac{1}{1000} \quad \text { Conombs }
$$

A Classic Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

A Classic Mixing Problem

Figure: Spatially uniform composite fluids (e.g. salt \& water, gas \& ethanol) being mixed. Concentrations of substance change in time.

Building an Equation

The rate of change of the amount of salt

$$
\frac{d A}{d t}=\binom{\text { input rate }}{\text { of salt }}-\binom{\text { output rate }}{\text { of salt }}
$$

The input rate of salt is

$$
\text { fluid rate in } \cdot \text { concentration of inflow }=r_{i}\left(c_{i}\right)
$$

The output rate of salt is
fluid rate out \cdot concentration of outflow $=r_{0}\left(c_{0}\right)$.

Building an Equation

The concentration of the outflowing fluid is

$$
\begin{gathered}
C_{0}=\frac{\text { total salt }}{\text { total volume }}=\frac{A(t)}{V(t)}=\frac{A(t)}{V(0)+\left(r_{i}-r_{0}\right) t} . \\
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{0} \frac{A}{V} .
\end{gathered}
$$

This equation is first order linear.

$$
\frac{d A}{d t}+\frac{r_{0}}{v} A=r_{i} C_{i}
$$

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.
fluid flow rates
Concentrations

$$
\begin{gathered}
r_{i}=S \frac{\text { ge }}{\text { min }} \quad C_{i}=2 \frac{\text { ib }}{50 l} \\
r_{0}=S \frac{g e l}{m \operatorname{man}} \quad C_{0}=\frac{A}{V} \frac{1 b}{g d}=\frac{A}{500} \frac{1 h}{9 d} \\
V(t)=V(0)+r_{i} t-r_{0} t=500+5 t-5 t=500 \\
\frac{d A}{d t}=r_{i} C_{i}-r_{0} C_{0}
\end{gathered}
$$

$$
\begin{gathered}
\frac{d A}{d t}=S(2)-5 \frac{A}{500} \quad \\
\frac{d A}{d t}+\frac{1}{100} A=10 \quad A(0)=0 \\
P(t)=\frac{1}{100}, \mu=e^{\int P(t) d t}=e^{\int \frac{1}{100} d t}=e^{\frac{1}{100} t} \\
e^{\frac{1}{100} t}\left(A^{\prime}+\frac{1}{100} A\right)=10 e^{\frac{1}{100} t} \\
\frac{d}{d t}\left(e^{\frac{1}{100} t} A\right)=10 e^{\frac{1}{100} t} \\
\int \frac{d}{d t}\left(e^{\frac{1}{100} t} A\right) d t=\int 10 e^{\frac{1}{100} t} d t
\end{gathered}
$$

$$
e^{\frac{1}{100} t} A=1000 e^{\frac{1}{100} t}+C
$$

Hence $A(t)=1000+C e^{\frac{-1}{100} t}$
Applying the IC. $A(0)=1000+C e^{\circ}=0$

$$
c=-1000
$$

The amount of salt is

$$
A(t)=1000-1000 e^{\frac{-1}{100} t}
$$

The concentration after S minutes is

$$
\begin{aligned}
\frac{A(5)}{V} & =\frac{1000-1000 e^{\frac{-1}{100}(s)}}{500} \frac{16}{90} \\
& =2-2 e^{\frac{-1}{20}} \approx 0.0975
\end{aligned}
$$

$$
r_{i} \neq r_{0} \quad \frac{d A}{d t}=r_{i} C_{i}-r_{0} C_{0}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

Now, r_{i} : s and $r_{0}=10$ so

$$
V(t)=500+(5 \cdot 10) t=500-5 t
$$

So $C_{0}=\frac{A}{V}=\frac{A}{500-S t}$

$$
\frac{d A}{d t}=S(2)-10 \frac{A}{500-5 t}
$$

In standard form

$$
\frac{d A}{d t}+\frac{2}{100-t} \quad A=10
$$

A Nonlinear Modeling Problem
A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} M$ of the environment and the current population. Determine the differential equation satsified by P.
The rate of change of $P, \frac{d P}{d t}$, is proportional to the product of P and $M-P$.

$$
\frac{d P}{d t}=k P(m-P)
$$

for some constant of proportionality k.
${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation

The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.

$$
\begin{array}{ll}
\text { Separable } & \frac{d P}{d t}=g(t) h(P) \\
g(t) & =k, h(P)=P(M-P) \\
\text { Bernoulli } & \frac{d P}{d t}
\end{array}=k M P-k P^{2} .
$$

$$
\frac{d P}{d t}=k P(M-P) \quad k>0, M>0
$$

Let $h(P)=P(M-P)$

If $P(0)>0 ; P$ should tend to M.

