September 4 Math 2306 sec. 51 Fall 2024

Section 4: First Order Equations: Linear

Recall that a first order linear equation is one that has the form¹

$$a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

In standard form, a first order linear equation looks like

$$\frac{dy}{dx}+P(x)y=f(x).$$

Assuming *P* and *f* are continuous on some interval *I*, the **general solution** will be the sum of a complementary and a particular solution.

$$y(x) = y_c(x) + y_p(x).$$

¹It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.

Solution Process 1st Order Linear ODE

- Put the equation in standard form y' + P(x)y = f(x), and correctly identify the function P(x).
- Obtain the integrating factor $\mu(x) = \exp\left(\int P(x) dx\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor µ. The left hand side will always collapse into the derivative of a product

$$\frac{d}{dx}[\mu(x)y] = \mu(x)f(x).$$

Integrate both sides, and solve for y.

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) f(x) \, dx$$
$$y(x) = e^{-\int P(x) \, dx} \left(\int e^{\int P(x) \, dx} f(x) \, dx + C \right)$$

Example

$$\frac{du}{dx} + P(x)u = f(k)$$

Find the general solution of the differential equation

$$\frac{du}{dx} - \frac{4}{x}u = -2x^{3}.$$

It is in Standard form $\omega \mid P(x) = \frac{u}{x}$

 $\mu = e^{\int -\frac{u}{x} dx} = e^{-\frac{u}{x} dx} = -\frac{u}{2}\ln|x|$

 $= e^{\ln x^{4}} = x^{4}$

 $rult:P(x) by h$

 $x^{2} \left(\frac{du}{dx} - \frac{u}{x}u\right) = x^{4} \left(-zx^{3}\right)$

 $\frac{d}{dx}\left(\chi^{-4}\nu\right) = -2\chi^{1}$ $\int \frac{d}{dx} \left(\frac{x^{4}}{x^{4}} \right) dx = \int -2x^{4} dx$ x^{-4} $u = -z \ln |x| + C$ Divide by x"

 $u = -\frac{\ln x^2 + C}{x^{-4}}$

The several solution is

 $u = x^{\prime} (c - l_{n} x^{2})$

Bernoulli Equations

Bernoulli 1st Order Equation

Suppose P(x) and f(x) are continuous on some interval (a, b) and *n* is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

is called a Bernoulli equation.

Observation: A Bernoulli equation looks like a linear one at first glance. However, since $n \neq 0, 1$ a Bernoulli equation is necessarily **nonlinear**.

Solving the Bernoulli Equation

$$\frac{dy}{dx} + P(x)y = f(x)y^n \tag{1}$$

We'll solve (1) by using a change of variables

$$u=y^{1-n}.$$

The new variable *u* will satisfy a linear equation which we will solve and substitute back $y = u^{\frac{1}{1-n}}$.

We'll replace the terms in the ODE with expressions in u. $u = y^{(-n)} \quad \frac{du}{dx} = (i-n)y^{(-n-1)} \frac{dy}{dx}$ $= (i-n)y^{(-n)} \frac{dy}{dx}$

$$\frac{dy}{dx} + P(x)y = f(x)y^{n}$$
Isolate $\frac{dy}{dx}$ $\frac{1}{1-n}$ y^{n} $\frac{du}{dx} = \frac{dy}{dx}$
Replace $\frac{dy}{dx}$ in the opt
 $\frac{1}{1-n}$ y^{n} $\frac{du}{dx} + P(x)y = f(x)y^{n}$
multiply by $\frac{1-n}{y^{n}}$
 $\frac{du}{dx} + (1-n)P(x)\frac{y}{y^{n}} = (1-n)f(x)\frac{y^{n}}{y^{n}}$

$$\frac{du}{dx} + (1-n)P(x)y^{1-n} = (1-n)f(x)$$

$$u$$
So u solver the lineor OPE
$$\frac{du}{dx} + (1-n)P(x)u = (1-n)f(x).$$

$$\frac{du}{dx} + P_{1}(x) u = f_{1}(x)$$
where $P_{1}(x) = (1-n)P(x)$ and $f_{1}(x) = (1-n)f(x)$

Solving a Bernoulli Equation $\frac{dy}{dx} + P(x)y = f(x)y^n$

- Introduce the new dependent variable $u = y^{1-n}$.
- Then u solves the first order linear equation

$$\frac{du}{dx}+(1-n)P(x)u=(1-n)f(x).$$

- Solve this linear equation using an integrating factor (in the usual way).
- Substitute back to the original variable

$$y=u^{\frac{1}{1-n}}.$$

Example

Solve the initial value problem

$$\frac{dy}{dx} + \frac{2}{x}y = x^3y^3, \quad x > 0, \quad y(1) = \frac{1}{2}.$$

$$| t'r \operatorname{Bernoulli}_{k} | w| n=3.$$

$$P(x) = \frac{2}{x}, \quad f(x) = x^{3}, \quad n=3$$

$$u = y'^{-1} = y'^{-3} = y'^{-2} \implies y = u$$

 $u \quad \text{solver} \quad \frac{du}{dx} + (1-n) P(x) u = (1-n) f(x)$

 $\frac{du}{dx}$ + (-2) $\frac{2}{x}$ h = (-2) x^{3} $\frac{du}{dx} - \frac{4}{x}u = -2x^{3}$ we found u=x"(c-lnx") $u = y^{2} = \frac{1}{b^{2}} \qquad y = \frac{1}{\sqrt{a}} \quad o \quad y = \frac{1}{\sqrt{a}}$ Since $y(1) = \frac{1}{2}$, $y = \frac{+1}{\sqrt{n}}$, $y = \frac{1}{\sqrt{n}}$ Sur is positive $y = \frac{1}{\sqrt{x^{2}(c - D_{n}x^{2})}}$

Apply the IC.

$$y(1) = \frac{1}{\sqrt{1^{4}(c-h_{1})^{2}}} = \frac{1}{2}$$

$$\frac{1}{\sqrt{c}} = \frac{1}{2} \Rightarrow c=4$$
The solution to the IVP is
$$y = \frac{1}{\sqrt{x^{4}(4-h_{1}x^{2})}}$$

Example: Logistic Equation

Assume that M and k are positive constants. Show that the following equation is a Bernoulli equation and find the general solution.

$$\frac{dP}{dt} = kP(M - P)$$