September 4 Math 2306 sec. 51 Fall 2024

Section 4: First Order Equations: Linear
Recall that a first order linear equation is one that has the form’

(0% 1 a(x)y = g(x).

In standard form, a first order linear equation looks like

% + P(x)y = f(x).

Assuming P and f are continuous on some interval /, the general solution
will be the sum of a complementary and a particular solution.

Y(x) = ye(X) + Yp(x).

'It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.



Solution Process 15! Order Linear ODE

> Put the equation in standard form y’ + P(x)y = f(x), and
correctly identify the function P(x).

> Obtain the integrating factor 1.(x) = exp ([ P(x) dx).

> Multiply both sides of the equation (in standard form) by the
integrating factor u. The left hand side will always collapse into
the derivative of a product

d
0Oy = OO ().
> Integrate both sides, and solve for y.

Y0 = [ ure0 o

_ effP(x)dx (/efP(x)de(X) dx —+ C)




Example

%‘ * Poodun = fg
Find the general solution of the differential equation
du 4 3
a - ;U = —2x°.
. -U
fready [ 4 x|
p: € = e = e
D % * -y
= e - X
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Bernoulli Equations

Bernoulli 15! Order Equation

Suppose P(x) and f(x) are continuous on some interval (&, b)
and n is a real number different from 0 or 1 (not necessarily an
integer). An equation of the form

dy

X+ P(X)y = ()"

is called a Bernoulli equation.

Observation: A Bernoulli equation looks like a linear one at first
glance. However, since n # 0,1 a Bernoulli equation is necessarily
nonlinear.



Solving the Bernoulli Equation

d
d%(/ + P(x)y = f(x)y" (1)
We’'ll solve (1) by using a change of variables
u=y'".

The new variable u will satisfy a linear equation which we will solve
1
and substitute back y = uT-n.
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» Introduce the new dependent variable u = y'=".

» Then u solves the first order linear equation

%
ax

» Solve this linear equation using an integrating factor (in the
usual way).

+ (1 = n)Px)u=(1-nf(x).

» Substitute back to the original variable

1



Example
Solve the initial value problem

dy

2 _ 33 _1
xR =XY x>0 y() =3
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2z _ B
Py = 5, foeo =X n=3
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Sty P = (- o)
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Example: Logistic Equation
Assume that M and k are positive constants. Show that the following
equation is a Bernoulli equation and find the general solution.

aP

— = kP(M-P)












