September 4 Math 2306 sec. 53 Fall 2024

Section 4: First Order Equations: Linear

Recall that a first order linear equation is one that has the form¹

$$a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

In standard form, a first order linear equation looks like

$$\frac{dy}{dx} + P(x)y = f(x).$$

Assuming P and f are continuous on some interval I, the **general solution** will be the sum of a complementary and a particular solution.

$$y(x) = y_c(x) + y_p(x).$$

¹It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.

Solution Process 1st Order Linear ODE

- Put the equation in standard form y' + P(x)y = f(x), and correctly identify the function P(x).
- ▶ Obtain the integrating factor $\mu(x) = \exp(\int P(x) dx)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ . The left hand side **will always** collapse into the derivative of a product

$$\frac{d}{dx}[\mu(x)y] = \mu(x)f(x).$$

Integrate both sides, and solve for y.

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) f(x) \, dx$$

$$=e^{-\int P(x)\,dx}\left(\int e^{\int P(x)\,dx}f(x)\,dx+C\right)$$

Example

Find the general solution of the differential equation

$$\frac{du}{dx} - \frac{4}{x}u = -2x^3.$$
It's linear in standard form $\omega \mid P(x) = \frac{-4}{x}$

$$\mu = e \qquad = e \qquad = e$$

$$= e^{\ln x^{\frac{1}{4}}} = e^{-\frac{1}{4}} = e^{-\frac{1}{4}}$$

$$= e^{\ln x^{\frac{1}{4}}} = e^{-\frac{1}{4}} = e^{-\frac{1}{4}}$$
Multiply by in and collapse
$$e^{-\frac{1}{4}} \left(\frac{du}{dx} - \frac{u}{x} u\right) = e^{-\frac{1}{4}} \left(-2x^3\right)$$

$$\frac{d}{dx} \left(x^{4} u \right) = -2x^{1}$$

$$\int \frac{d}{dx} \left(x^{4} u \right) dx = \int -2x^{1} dx$$

$$\times^{4} u = -2\ln|x| + C$$

$$u = -\frac{\ln x^{2} + C}{x^{4}}$$
The solution
$$u = x^{4} \left(C - \ln x^{2} \right).$$

Bernoulli Equations

Bernoulli 1st Order Equation

Suppose P(x) and f(x) are continuous on some interval (a,b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

is called a Bernoulli equation.

Observation: A Bernoulli equation looks like a linear one at first glance. However, since $n \neq 0, 1$ a Bernoulli equation is necessarily **nonlinear**.

Solving the Bernoulli Equation

$$\frac{dy}{dx} + P(x)y = f(x)y^n \tag{1}$$

We'll solve (1) by using a change of variables

$$u = y^{1-n}$$
.

The new variable u will satisfy a linear equation which we will solve and substitute back $y = u^{\frac{1}{1-n}}$.

We'll replace the terms in the ODE with expressions in terms of
$$u$$
.

Set $u = y^{-n}$, $\frac{du}{dx} = (1-n)y^{-n-1}\frac{dy}{dx}$

$$= (1-n)y^{-n}\frac{dy}{dx}$$

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

Multiply by
$$\frac{1}{1-n}y^n$$

$$\frac{dy}{dx} = \frac{1}{1-n}y^n \frac{dx}{dx}$$

$$\frac{\partial}{\partial x} = \frac{1}{1-n} \quad \forall \quad \forall x$$

$$\frac{1}{1-n}y^n\frac{du}{dx}+P(x)y=f(x)y^n$$

mut.
$$y = \frac{dy}{dx} + (1-y) +$$

$$\frac{du}{dx} + (1-n) P(x) y^{1-n} = (1-n) f(x)$$

$$\frac{dh}{dx} + (1-n) P(x) h = (1-n) f(x)$$

This is linear.

Solving a Bernoulli Equation $\frac{dy}{dx} + P(x)y = f(x)y^n$

- Introduce the new dependent variable $u = y^{1-n}$.
- ▶ Then *u* solves the first order linear equation

$$\frac{du}{dx}+(1-n)P(x)u=(1-n)f(x).$$

- ► Solve this linear equation using an integrating factor (in the usual way).
- Substitute back to the original variable

$$y=u^{\frac{1}{1-n}}.$$

Example

Solve the initial value problem

$$\frac{dy}{dx} + \frac{2}{x}y = x^{3}y^{3}, \quad x > 0, \quad y(1) = \frac{1}{2}.$$
It's Bernoulli when $n = 3$.
$$P(x) = \frac{2}{x}, \quad f(x) = x^{3}, \quad n = 3.$$
Let $u = y^{1-3} = y^{2}$

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)f(x)$$

$$\frac{du}{dx} = \frac{y}{x} u = -2x^{3}$$
We solved this and found
$$u = x^{4} \left(C - \ln x^{2} \right)$$

$$u = y^{2} = \frac{1}{3^{2}} \implies y = \frac{1}{3} \qquad \text{or } y = \frac{1}{3} \qquad \text{or$$

 $\frac{du}{dx} + (-z) \frac{z}{x} u = (-z) x^3$

$$y = \frac{1}{\sqrt{x^{4}(c-J_{n}x^{2})}}$$
Apply
$$y(1) = \frac{1}{2}$$

 $y(1) = \frac{1}{\sqrt{1^{4}(c-0)^{2}}} = \frac{1}{2}$

The solution to the IVP is $S = \frac{1}{\sqrt{x'(4-2nx^2)}}$

tc = = = = c=4