September 1 Math 2306 sec. 52 Spring 2023

We have three types of first order equations that we know how to solve. These are

$$
\begin{aligned}
& \text { Separable: } \frac{d y}{d x}=g(x) h(y) \\
& \text { Linear: } \\
& \quad \frac{d y}{d x}+P(x) y=f(x) \\
& \text { Bernoulli: } \frac{d y}{d x}+P(x) y=f(x) y^{n}, \quad n \neq 0,1
\end{aligned}
$$

Remark: It's possible that an equation can be of more than one type. Possible combinations are:

- separable and linear, and
- separable and Bernoulli.

Solving Separable Equations

- Identify the equation as separable $\frac{d y}{d x}=g(x) h(y)$.
- Identify any constant solutions, $y(x)=c$, if possible ${ }^{a}$ by solving $h(c)=0$.
- Separate variables (using multiplication and division)

$$
\frac{1}{h(y)} d y=g(x) d x
$$

- Integrate both sides of the fully separated equation.

[^0]
Solution Process $1^{\text {st }}$ Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
\begin{aligned}
y(x) & =\frac{1}{\mu(x)} \int \mu(x) f(x) d x \\
& =e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
\end{aligned}
$$

Solving a Bernoulli Equation
 $\frac{d y}{d x}+P(x) y=f(x) y^{n}$

- Introduce the new dependent variable $u=y^{1-n}$.
- Then u solves the first order linear equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

- Solve this linear equation using an integrating factor (in the usual way).
- Substitute back to the original variable

$$
y=u^{\frac{1}{1-n}} .
$$

Identifying Equation Types
Classify each equation as being Bernoulli, Linear, or Separable.
(a) $x^{2} \frac{d y}{d x}=y \cos (2 y) \Rightarrow y^{\prime}=\frac{1}{x^{2}}(y \cos (2 b))$

Lt's separable us $g(x)=\frac{1}{x^{2}}$

$$
h(y)=y \cos (2 y)
$$

(b) $e^{2 x} \frac{d y}{d x}=y^{2}-2 y \quad \Rightarrow \quad \frac{d y}{d x}=e^{-2 x}\left(y^{2}-2 y\right)$

Also $\frac{d y}{d x}+2 e^{-2 x} y=e^{-2 x} y^{2}$
Bernoullo

This one is both separable and Bernoulli

Identifying Equation Types

Classify each equation as being Bernoulli, Linear, or Separable.

$$
\begin{aligned}
& \text { (c) } \frac{d V}{d t}=-2(V-1) \quad \text { Sepanobl } \quad g(t)=-2, h(v)=V-1 \\
& \text { also } \frac{d V}{d t}+2 V=2 \quad \text { This is both separable and }
\end{aligned}
$$

$$
\text { (d) } \frac{d x}{d t}+\frac{x}{t+1}=\ln (t)
$$

$$
\frac{d x}{d t}+\frac{1}{t+1} x=\ln t
$$

Linear (only)

[^0]: ${ }^{\text {a }}$ If h is very complicated, it might be necessary to skip this.

