September 8 Math 2306 sec. 51 Fall 2021

Section 5: First Order Equations Models and Applications

Figure: We've seen exponential growth/decay and simple linear circuits (RC or LR)

Logistic Differential Equation
The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation and show that for any initial population $P(0) \neq 0$, $P \rightarrow M$ as $t \rightarrow \infty$.

The $O D E$ is a Bernoulli eqn.

$$
\begin{aligned}
& \frac{d P}{d t}-k M P=-k P^{2}, \quad n=2 \\
& \frac{d y}{d x}+Q(x) y=f(x) y^{n} \quad u=y^{1-n}
\end{aligned}
$$

Usones

$$
\frac{d u}{d x}+(1-n) Q(x) u=(1-n) f(x)
$$

Let $u=P^{1-2}=P^{-1}$

$$
\begin{aligned}
& Q(t)=-k m \quad 1-n=-1 \\
& f(t)=-k
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{d u}{d t}+(-1)(-k M) u & =(-1)(-k) \\
\frac{d u}{d t}+k M u & =k \\
Q_{1}(t)=k M, \mu & =e^{\int Q(t) d t}=e^{\int u m d t} \\
& =e^{k M t} \\
e^{k m t}\left(u^{\prime}+k m u\right) & =k e^{k m t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left[e^{k m t} u\right]=u e^{k M t} \\
& \int \frac{d}{d t}\left[e^{k m t} u\right] d t=\int k e^{k M t} d t \\
& e^{k M t} u=\frac{1}{M} e^{k M t}+C \\
& u=\frac{1}{m}+C e^{-k M t} \\
& u=P^{-1} \Rightarrow P \cdot u^{-1} \\
& P=\frac{1}{\frac{1}{M}+C e^{-k m t} \cdot \frac{M}{M}=\frac{M}{1+C M e^{-k M t}}}
\end{aligned}
$$

Let $P(0)=P_{0}$

$$
\begin{gathered}
P(0)=\frac{M}{1+C M e^{0}}=P_{0} \\
M=P_{0}(1+C M)=P_{0}+P_{0} M C \\
P_{0} M C=M-P_{0} \\
C=\frac{M-P_{0}}{M P_{0}} \\
P(t)=\frac{M}{1+\left(\frac{M-P_{0}}{M P_{0}}\right) M e^{-k M t}} \frac{P_{0}}{P_{0}} \\
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}}
\end{gathered}
$$

we can look at the long term population taking $\quad t \rightarrow \infty$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\lim _{t \rightarrow \infty} \frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}} \\
& =\frac{M P_{0}}{P_{0}+O}=\frac{M P_{0}}{P_{0}}=M
\end{aligned}
$$

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
\begin{equation*}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l . \tag{1}
\end{equation*}
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

NOTE: Taking all of the c's to be zero will always satisfy equation (1). The set of functions is linearly independent if taking all of the c's equal to zero is the only way to make the equation true.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.
we wart to show that $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x is only, true if $c_{1}=c_{2}=0$.

Suppose $c_{1} \sin x+c_{2} \cos x=0$ for all real x.

The equation has to hold when $x=0$.
we get

$$
c_{0} \operatorname{cin}_{0}(0)+c_{2} \cos (0)=0
$$

This pesation is $c_{1}(0)+c_{2}(1)=0 \Rightarrow c_{2}=0$

Now the equation be comes

$$
c_{1} \sin x=0 \text { for de } x \text {. }
$$

This holds when $x=\frac{\pi}{2}$. That is

$$
\text { c. } \sin \frac{\pi}{2}=0
$$

1^{7}
Hence $C_{1}=0$.
Thus $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x only if $c_{1}=c_{2}=0$.

We conclude that $f_{1}(x)=\sin x$ and $f_{2}(x)=\operatorname{Cos} x$ are lineal, independent.

