September 8 Math 2306 sec. 51 Fall 2021

Section 5: First Order Equations Models and Applications

Identify key
ts

component

Figure: We've seen exponential growth/decay and simple linear circuits (RC
or LR)
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Logistic Differential Equation

The equation
dP

at
is called a logistic growth equation.

Solve this equation and show that for any initial population P(0) # 0,
P— Mast— oc.

= kP(M - P), k,M>0
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Section 6: Linear Equations Theory and Terminology

Recall that an n order linear IVP consists of an equation

dn gn-1 d
an(x )dx};Jran 1(X)d n— }1/+"'+a1(x)d%(/+30(x)y:g()()

to solve subject to conditions

yxo0)=Yo, Y0)=x1, v YD (x0) = yns.

The problem is called homogeneous if g(x) = 0. Otherwise it is called
nonhomogeneous.
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Theorem: Existence & Uniqueness

Theorem: If ay, ..., a, and g are continuous on an interval /,

an(x) # 0 for each x in I, and xg is any point in /, then for any choice of
constants yp, ..., ¥n_1, the IVP has a unique solution y(x) on /.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!
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Homogeneous Equations

We’ll consider the equation
dnf1y dy
W+---+a1(x)a+ao(x)y:0

and assume that each a; is continuous and a,, is never zero on the
interval of interest.

an() 2 4 ap ()

Theorem: If yq, v», ..., ¥k are all solutions of this homogeneous
equation on an interval /, then the linear combination

y(x) = ciy1(x) + coy(X) + - - + Ck¥k(X)

is also a solution on / for any choice of constants ¢, .. ., Cx.

This is called the principle of superposition.
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Corollaries

(i) If y; solves the homogeneous equation, the any constant multiple
y = cyy is also a solution.

(i) The solution y = 0 (called the trivial solution) is always a solution
to a homogeneous equation.

Big Questions:
» Does an equation have any nontrivial solution(s), and

» since y; and cyy aren’t truly different solutions, what criteria will be
used to call solutions distinct?
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Linear Dependence

Definition: A set of functions fi(x), f(x), ..., fa(x) are said to be
linearly dependent on an interval / if there exists a set of constants
cy, Co, ..., Cp With at least one of them being nonzero such that

cifi(x) + cofo(X) + -+ -+ cafa(x) =0 forall xin /. (1)

A set of functions that is not linearly dependent on / is said to be
linearly independent on /.

NOTE: Taking all of the ¢’s to be zero will always satisfy equation (1).

The set of functions is linearly independent if taking all of the ¢’s
equal to zero is the only way to make the equation true.
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Example: A linearly Independent Set

The functions f;(x) = sin x and f(x) = cos x are linearly independent

on [ = (—o0, 00).
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