#### September 8 Math 2306 sec. 54 Fall 2021

#### **Section 5: First Order Equations Models and Applications**



Figure: We've seen exponential growth/decay and simple linear circuits (RC or LR)

## Logistic Differential Equation

The equation

$$\frac{dP}{dt} = kP(M-P), \quad k, M > 0$$

is called a **logistic growth equation**.

Solve this equation and show that for any initial population  $P(0) \neq 0$ ,  $P \to M$  as  $t \to \infty$ .

Bernoulli 
$$\frac{ds}{dx} + Q(x)y = f(x)y^n$$

set  $u = y^{1-n}$  then  $u$  solves

$$\frac{du}{dx} + (1-n)Q(x)u = (1-n)f(x)$$

Our ODE is  $\frac{dP}{dt} - kMP = -kP^2$   $n = 2$ 

2/41

Here 
$$O(k) = -kM$$
,  $f(k) = -k$ 
 $1-N = 1-2 = -1$ 

Hence  $\frac{dn}{dk} + (-1)(-kn)n = (-1)(-k)$ 
 $\frac{dn}{dk} + kMn = k$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)dk = 0$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)$ 
 $Q_1(k) = kM$ ,  $p = Q_2(k)$ 

September 3, 2021

3/41

u = P1-2 = P1

$$u = \frac{1}{M} + Ce^{-knt}$$

$$u = P' \Rightarrow P = \overline{u'} = \frac{1}{u}$$

$$P(t) = \frac{M}{1 + CM e^{-knt}}$$
September 3, 2021

$$C = \frac{M - P_0}{MP_0}$$

. September 3, 2021

This is the solution to the IVP.

Looking at the long term solution

$$= \frac{MP_0}{P_0 + (M-P_0) \cdot \tilde{O}} = \frac{MP_0}{P_0} = M$$

# Section 6: Linear Equations Theory and Terminology

Recall that an *n*<sup>th</sup> order linear IVP consists of an equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

to solve subject to conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

The problem is called **homogeneous** if  $g(x) \equiv 0$ . Otherwise it is called **nonhomogeneous**.

### Theorem: Existence & Uniqueness

**Theorem:** If  $a_0, \ldots, a_n$  and g are continuous on an interval I,  $a_n(x) \neq 0$  for each x in I, and  $x_0$  is any point in I, then for any choice of constants  $y_0, \ldots, y_{n-1}$ , the IVP has a unique solution y(x) on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

### Homogeneous Equations

We'll consider the equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

and assume that each  $a_i$  is continuous and  $a_n$  is never zero on the interval of interest.

**Theorem:** If  $y_1, y_2, \dots, y_k$  are all solutions of this homogeneous equation on an interval I, then the *linear combination* 

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

is also a solution on I for any choice of constants  $c_1, \ldots, c_k$ .

This is called the **principle of superposition**.



#### Corollaries

- (i) If  $y_1$  solves the homogeneous equation, the any constant multiple  $y = cy_1$  is also a solution.
- (ii) The solution y = 0 (called the trivial solution) is always a solution to a homogeneous equation.

#### **Big Questions:**

- Does an equation have any nontrivial solution(s), and
- ightharpoonup since  $y_1$  and  $cy_1$  aren't truly *different* solutions, what criteria will be used to call solutions distinct?

#### Linear Dependence

**Definition:** A set of functions  $f_1(x)$ ,  $f_2(x)$ , ...,  $f_n(x)$  are said to be **linearly dependent** on an interval I if there exists a set of constants  $c_1, c_2, \ldots, c_n$  with at least one of them being nonzero such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all  $x$  in  $I$ .

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

**NOTE:** Taking all of the c's to be zero will **always** satisfy equation (1). The set of functions is linearly **independent** if taking all of the c's equal to zero is the **only** way to make the equation true.

## Example: A linearly Independent Set

The functions  $f_1(x) = \sin x$  and  $f_2(x) = \cos x$  are linearly independent on  $I = (-\infty, \infty)$ .

We need to show that 
$$c_1f_1(x) + c_2f_2(x) = 0$$
  
for all real  $x$  is only true if  $c_1 = 0$  and  $c_2 = 0$ . The equation is  $c_1 \leq nx + c_2 \leq nx = 0$ .  
Well assume this is true for all real  $x$ .  
The equation must be true if  $x = 0$ . When  $x = 0$ , we have  $c_1 \leq nx \leq 0$ .

That is,  $C_1(0) + C_2(1) = 0 \implies C_2 = 0$ .

The equation is C, Smx = 0 , for all real X,

The equation holds when X= \frac{T}{2}. This gives

C. SIN = 0

That is,  $C_1(1)=0 \Rightarrow C_1=0$ .

So  $C_1 f_1(x) + C_2 f_2(x) = 0$  for all real x is only true if  $C_1 = 0$  and  $C_2 = 0$ .

It follows that fixi = Sinx and fix = Cosx are linearly independent.