September 8 Math 3260 sec. 53 Fall 2025

Chapter 2 Systems of Linear Equations

In this chapter, we will consider equations that have a special structure known as **linearity**. We will

- define linear equations and linear systems,
- define solutions and solution sets,
- learn Gaussian elimination,
- introduce matrices as a tool for solving linear systems,
- and learn how matrices can be used to solve linear systems.

Linear Equation (in *n* **variables)**

A **linear equation** in the variables x_1, x_2, \dots, x_n is an equation that can be written in the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b,$$

where a_1, a_2, \ldots, a_n and b are real numbers (scalars). The numbers a_1, \ldots, a_n are called the **coefficients**, and b can be called the **constant term**.

A linear equation is one in which exactly two operations can be done on the variables: (1) multiply by scalars, and (2) add.

Linear:
$$2x_1 - \sqrt{2}x_2 + 21x_3 = -1$$
, $-3x_1 + 4x_2 = 0$

Not Linear:
$$x_1x_2 + x_3 = 4$$
, $x_1^3 - e^{x_2} = 0$

System of Linear Equations

A **system of linear equations** (a.k.a. a *linear system*) is a collection of one or more linear equations in the same variables considered together. A generic system of *m* equations in *n* variables is shown in equation (1).

For example

3 equations in 3 variables

Homogeneous -vs- Nonhomogeneous

A system is called **homogeneous** if all constant terms are zero. Otherwise, it's called **nonhomogeneous**.

a homogeneous system

$$3x_1 + x_2 - 2x_3 + 4x_4 = 5$$

 $2x_1 - 4x_3 + 6x_4 = 4$

a nonhomogeneous system

Solutions & Solution Sets

Solutions & Solution Sets

A **solution** of (1) is as an ordered *n*-tuple of real numbers, $(s_1, s_2, ..., s_n)$, having the property that upon substitution,

$$X_1 = S_1, \quad X_2 = S_2, \quad \cdots, \quad X_n = S_n,$$

every equation in the system reduces to an identity. The collection of all solutions of (1) is called the **solution set** of the system.

Example: Show that (2,1,3) is a solution of the homogeneous system

$$2x_1 - x_2 - x_3 = 0$$
 We con sub $x_1 = 2$, $x_2 = 1$
 $3x_1 - 2x_3 = 0$ $x_3 = 3$ into all three
 $-x_1 - x_2 + x_3 = 0$ equations

$$2^{n}$$
 equation $3(2)$ $-2(3)=6-6=0$ also true.
 $3^{n} = 2^{n} = 2^$

All three equations reduce to the identity
0=0, so (2,1,3) is a solution.

The solution set¹ of this system is $\{(2t, t, 3t) | t \in R\}$.

$$2x_1 - x_2 - x_3 = 0$$
 We car vertor by setting $3x_1 - 2x_3 = 0$ $x_1 = 2t$, $x_2 = t$, and $x_3 = 3t$ leaving t as t .

1stegration 2(zt) - t - (3t) = 4t - t - 3t = 4t - 4t = 0 2^{nd} equation 3(zt) -z(3t) = 6t - 6t = 0 3^{nd} equation -(zt) - t + 3t = -3t + 3t = 0(zt, t, 3t) solves all equations in the system for any value t.

 $^{^{1}}$ It's not obvious that there are no solutions other than the ones listed here. $\,\,$ $\,$

Expressing Solutions

We can use the notation from the previous examples:

- as a point $(s_1, s_2, ..., s_n)$ —e.g., (2, 1, 3), or
- ▶ using set builder notation, such as $\{(2t, t, 3t) | t \in R\}$

The more common types will be **parametric** and **vector parametric**.

Parametric

A parametric description—or parametric form—is a list. For example,

Expressing Solutions

Vector Parametric

A vector parametric description—or vector parametric form—is a solution/solutions expressed as a vector/vectors.

$$\vec{x} = \langle 2, 1, 3 \rangle$$
, or $\vec{x} = t \langle 2, 1, 3 \rangle$, $t \in R$.

Remark: Note here that we're just taking our variables, x_1, x_2, \dots, x_n , and placing them as entries in a vector

$$\vec{x} = \langle x_1, x_2, \dots, x_n \rangle.$$

If we have a parametric description (i.e., we already have a list), then it's a simple task of building vector(s) from that list.

$$3x_1 + x_2 - 2x_3 + 4x_4 = 5 2x_1 - 4x_3 + 6x_4 = 4$$
 (2)

It can be shown that the solutions of (2) are the 4-tuples (x_1, x_2, x_3, x_4) where

- $ightharpoonup x_3$ and x_4 can be any real numbers as long as
- $x_1 = 2 + 2x_3 3x_4$, and $x_2 = -1 4x_3 + 5x_4$.

To write a **parametric** description, we choose *parameter* names for x_3 and x_4 , and then list the formulas. Letting $x_3 = s$ and $x_4 = t$, with the understanding that $s, t \in R$, we can write

$$x_1 = 2 + 2s - 3t,$$

 $x_2 = -1 - 4s + 5t,$
 $x_3 = s,$
 $x_4 = t,$
 $s, t \in R.$

Converting Parametric to Vector Parametric Form

$$x_1 = 2 + 2s - 3t,$$

 $x_2 = -1 - 4s + 5t,$
 $x_3 = s,$
 $x_4 = t,$
 $s, t \in R.$

Let's convert this parametric description to vector parametric. (The process will be familiar.)

$$\vec{\chi} = (x_1, x_2, x_3, x_4)$$
= (x_1, x_2, x_3, x_4)

Equivalent Systems

Definition: Equivalent Systems

We will say that two systems of linear equations are **equivalent** if they have the same solution set.

Remark: Equivalent systems will necessarily be in the same variables, but they don't necessarily **look** the same. They don't even have to have the same number of equations!

These two systems are equivalent, but it's not at all obvious!

Existence & Uniqueness

Existence & Uniqueness

Theorem: For a system of linear equations, exactly one of the following is true:

- i. the solution set is empty (i.e., there is no solution),
- ii. there exists a unique solution, or
- iii. there are infinitely many solutions.

If a system has at least one solution, we call it **consistent**. Otherwise, we call the system **inconsistent**. So

- Case i. is inconsistent, and
- Cases ii. and iii. are consistent.

Homogeneous Systems

Consider a homogeneous sytem in *n* variables.

Question: Without more information about the coefficients, a_{ij} , is there an *obvious* solution?

$$X_1=0$$
, $X_2=0$, ..., $X_n=0$ solves the system for any set of coefficients.

The Trivial Solution

The solution $x_1 = x_2 = \cdots = x_n = 0$, or in vector parametric form

$$\vec{x} = \vec{0}_n$$

is called the trivial solution.

Every homogeneous system is consistent because every homogeneous system admits the trivial solution.

- If a homogeneous system has exactly one solution, then it must be the trivial solution.
- ► If a homogeneous system has infinitely many solutions, we call any solution that is not the zero vector **a nontrivial solution**.

2.1.1 Systems of Two Equations with Two Variables

A system of two equations in two variables has the form

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{22}x_2 = b_2$

We can think of the two equations as corresponding to a pair of lines, something like

$$x_2 = (slope) x_1 + (intercept).$$

Such systems allow us to compare the three solution cases geometrically.

The three solution cases are easily visualized in R^2 .

Figure: Lines determined by two linear equations in two variables illustrating the three possible geometric relationships.

- i. parallel, non-intersecting lines correspond to an inconsistent system,
- ii. lines with two distinct slopes correspond to a system with one solution,
- iii. coincident lines corresponds to a system with infinitely many solutions.

Example

Translate each equation into a line and determine if the system is consistent or inconsistent. If consistent, state whether there is a unique solution or infinitely many solutions.

$$\begin{array}{rcl} 3x_1 & - & x_2 & = & 4 \\ 4x_1 & + & 2x_2 & = & -2 \end{array}$$

Figure: Lines defined by the equations $3x_1 - x_2 = 4$ and $4x_1 + 2x_2 = -2$ intersect at the point $\left(\frac{3}{5}, -\frac{11}{5}\right)$. The solution set consists of this single ordered pair.

Example

Translate each equation into a line and determine if the system is consistent or inconsistent. If consistent, state whether there is a unique solution or infinitely many solutions.

$$-5x_1 + 3x_2 = 6$$

$$2x_1 - \frac{6}{5}x_2 = -\frac{12}{5}$$

$$-5x_1 + 3x_2 = 6 \Rightarrow 3x_2 = 5x_1 + 6 \Rightarrow x_2 = \frac{5}{3}x_1 + 7$$

$$2x_1 - \frac{6}{5}x_2 = \frac{12}{5} \Rightarrow x_2 = \frac{5}{3}x_1 + 7$$

$$2x_1 - \frac{6}{5}x_2 = \frac{12}{5} \Rightarrow x_2 = 2x_1 + \frac{12}{5} \Rightarrow x_2 = \frac{5}{6}(2x_1 + \frac{12}{5})$$

$$x_2 = \frac{5}{3}x_1 + 2$$

The system is ancistent and infinitely

many solutions.

Figure: Lines defined by the equations $-5x_1 + 3x_2 = 6$ and $2x_1 - \frac{6}{5}x_2 = -\frac{12}{5}$ are concurrent. Every pair (x_1, x_2) on this line is in the solution set.

A parametric or vector parametric description could be

$$x_1 = -\frac{6}{5} + \frac{3}{5}t$$

 $x_2 = t$, $t \in R$, or $\vec{x} = \left\langle -\frac{6}{5}, 0 \right\rangle + t \left\langle \frac{3}{5}, 1 \right\rangle$