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Section 5: First Order Equations: Models and Applications

Figure: Mathematical Models give Rise to Differential Equations

In this section, we will consider select models involving first order
ODEs. Let’s see the process in action.



RC and LR Series Circuits

We want to track the charge on a capacitor (RC circuit) or the current
in a circuit (LR circuit). Recall that current i is rate of change of charge
q. These are functions of time.

The voltage across each type of element is shown below:

Component Potential Drop
Inductor L di

dt
Resistor Ri i.e. R dq

dt
Capacitor 1

C q

Table: The potential drop across various elements.



Kirchhoff’s Law

Kirchhoff’s Law

Kirchhoff’s Law states that:
The sum of the voltages around a closed circuit is zero.

In other words, the sum of potential drops across the passive
components is equal to the applied electromotive force. We can use
this to arrive at a differential equation for the charge q(t) in an RC
circuit or the current i(t) in and LR circuit.

Both of these result in a first order linear differential equation.



RC Series Circuit

Figure: Series Circuit with Applied Electromotive force E , Resistance R, and
Capcitance C. The charge of the capacitor is q and the current i = dq

dt .

drop across resistor + drop across capacitor = applied force
R dq

dt + 1
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If q(0) = q0, the IVP can be solved to find q(t) for all t > 0.



LR Series Circuit

Figure: Series Circuit with Applied Electromotive force E , Inductance L, and
Resistance R. The current is i .

drop across inductor + drop across resistor = applied force
L di

dt + Ri = E(t)
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If i(0) = i0, the IVP can be solved to find i(t) for all t > 0.



Summary of First Order Circuit Models
Before considering an example, let’s summarize our two circuit models.

The charge q(t) at time t on the capacitor in an RC-series circuit with
resistance R ohm, capacitance C farads, and applied voltage E(t) volts
satisfies

R
dq
dt

+
1
C

q = E(t), q(0) = q0

where q0 is the initial charge on the capacitor.

The current i(t) at time t in an LR-series circuit with resistance R ohm,
inductance L henries, and applied voltage E(t) volts satisfies

L
di
dt

+ Ri = E(t), i(0) = i0

where i0 is the initial current in the circuit.



Example

A 200 volt battery is applied to an RC series circuit with resistance
1000Ω and capacitance 5 × 10−6 f . Find the charge q(t) on the
capacitor if i(0) = 0.4A. Determine the charge as t → ∞.

R
dq
dt

+
1
C

q = E(t),







A Classic Mixing Problem

Classical mixing involves tracking the mass of some substance in a
composite mixture. Examples include

▶ salt in a salt-water mixture,
▶ ethanol in an ethanol-gasoline mixture,
▶ polutant in a volume of water.

Let’s look at a specific problem and build a model that can be used in
general. First, a visual.



A Classic Mixing Problem

Figure: We wish to track the amount of some substance in a composite mixture such
as salt and water, gas and ethanol, polutant and water, etc. Fluid may flow in and out
of the composition, and we assume instant mixing so that the mass of some
substance is dependent on time, but not on space.



A Classic Mixing Problem

A tank originally contains 500 gallons of pure water.
Brine containing 2 pounds of salt per gallon is
pumped in at a rate of 5 gal/min. The well mixed
solution is pumped out at the same rate. Find the
amount of salt A(t) in pounds at the time t . Find the
concentration of the mixture in the tank at t = 5
minutes.
In order to answer such a question, we need to convert the problem
statement into a mathematical one.



Some Notation

In addition to the amount of salt, A(t), at time t we have several
variables or parameters. Let
▶ ri be the rate at which fluid enters the tank (rate in),

▶ ro be the rate at which fluid leaves the tank (rate out),

▶ ci be the concentration of substance (salt) in the in-flowing fluid
(concentration in),

▶ co be the concentration of substance (salt) in the out-flowing
fluid (concentration out),

▶ V (t) be the total volume of fluid in the tank at time t ,

▶ V0 be the volume of fluid in the tank at time t = 0, i.e.,
V0 = V (0)



A Classic Mixing Problem Illustrated

Figure: Values for ci , ri , and ro are given in the problem statement. The well
mixed assumption means that co will match the concentration in the tank.

This means that co is NOT constant! It depends on time through both
A and V .



Building an Equation

What is the rate of change of the mass of the salt?

dA
dt

=

(
input rate

of salt

)
−
(

output rate
of salt

)
where

The input rate of salt is

fluid rate in · concentration of inflow = ri · ci .

The output rate of salt is

fluid rate out · concentration of outflow = ro · co.

The parameters ri , ci , and ro are part of the problem statement. We must determine
co.



Building an Equation
By the well mixed solution assumption, the concentration of salt in the
out-flowing fluid matches the concentration in the tank. That is,

co =
total salt

total volume
=

A(t)
V (t)

=
A(t)

V (0) + (ri − ro)t
.

Note that the volume

V (t) = initial volume + rate in × time − rate out × time.

If ri = ro, then V (t) = V (0) a constant.

Pulling this together, the amount A satisfies the first order linear ODE

dA
dt

= ri · ci − ro
A
V
.



Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2
pounds of salt per gallon is pumped in at a rate of 5gal/min. The well
mixed solution is pumped out at the same rate. Find the amount of salt
A(t) in pounds at the time t . Find the concentration of the mixture in
the tank at t = 5 minutes.

dA
dt

= ri · ci − ro
A
V
.









A Nonlinear Modeling Problem
The last model we will consider is a nonlinear population model. It can
account for reproduction and environmental limitations. Let’s consider it
through an example.

A population P(t) of tilapia changes at a rate jointly proportional to the current
population and the difference between the constant carrying capacity1 M of
the environment and the current population. Determine the differential
equation satsified by P.

1The carrying capacity is the maximum number of individuals that the environment
can support due to limitation of space and resources.



Logistic Differential Equation

Logistic Growth Model

The equation
dP
dt

= kP(M − P), where k ,M > 0 is called a logistic
growth equation.

Suppose the intial population P(0) = P0. Solve the resulting initial value
problem. Show that if P0 > 0, the population tends to the carrying capacity M.



Logistic Growth: P ′(t) = kP(M − P) P(0) = P0







Long Time Solution of Logistic Equation

dP
dt

= kP(M − P) = −kP2 + kMP.

Figure: Plot of P versus dP
dt . Note that dP

dt > 0 if 0 < P < M and dP
dt < 0 if

P > M.



Expected Long Time Solutions
Suppose we modify the logistic equation based on the assumption that
the fish will only breed successfully if the population is above some
minimum threshhold N where 0 < N < M. The new model is

dP
dt

= kP(M − P)(P − N).

Figure: Plot of P versus dP
dt for the modified model. There are two long-time

scenarios, extinction and achieving carrying capacity.



Expected Long Time Solutions

Use the given plot of F (P) = kP(M − P)(P − N) to determine the long

time solution of
dP
dt

= F (P) if (a) 0 < P(0) < N, (b) N < P(0) < M or
(c) P(0) > M.





Qualitative Analysis

Autonomous Equation

The differential equation
dy
dt

= f (t , y(t)) is called autonomous
if the right hand side does not depend explicitly on t—i.e., an
autonomous equation has the form

dy
dt

= F (y).



Equilibrium Solutions

Equilibrium Solutions

If y0 is a value such that F (y0) = 0, then the constant function
y(t) = y0 is called an equilibrium solution (or equilibrium point)

of the autonomous differential equation
dy
dt

= F (y).

Note: If y(0) = y0 and y0 is an equilibrium solution, then y(t) = y0 is a
constant solution.

Question: What if y(0) is not an equilibrium value, but is close to an
equilibrium value? What can we expect from the solution?



Stability of Equilibrium Solutions

In general, we may classify an equilibrium solution of a given
autononous ODE as being

▶ unstable: solutions close, but not exact, will tend away from the
equilibrium value,

▶ stable: solutions close, but not exact, will tend towards the
equilibrium value2, or

▶ semi-stable: solutions close, but not exact, may tend towards or
away from the equilibrium value depending on whether the
solution is greater than or less than the equilibrium value.

Note: There are more detailed notions of stability, so there’s more to
the story. But we’ll consider the above definitions here.

2
This is more accurately referred to as asymptotically stable



Determining Stability of an Equilibrium Solution

To determine the nature of an equilibrium solution y0 for an ODE
y ′ = F (y), we can analyze the sign of F in the neighborhood of y0.
Suppose F is continuous on an open interval about y0.

▶ If F changes sign from positive (+) to negative (-) as y passes
through y0 (from left to right), then y0 is a stable equilibrium.

▶ If F changes signs from negative (-) to positive (+) as y passes
through y0, then then y0 is an unstable equilibrium.

▶ If F doesn’t change signs, then y0 is semi-stable.

If this reminds you of a derivative test, there’s a good reason for that.
Fortunately, it’s easy to visualize the cases if you can obtain even a crude
drawing of the graph of F .



Example

Consider the IVP

y ′ = 2(y + 1)(2 − y)2(y − 3), y(0) = k .

Determine the long time behavior, lim
t→∞

y(t), if

(a) k = −2, (b) k = 0, (c) k = 1,
(d) k = 2, (e) k = 2.5, (f) k = 4.

The ODE is autonomous and F (y) = 2(y + 1)(2 − y)2(y − 3) is a
fourth degree polynomial with three roots at y0,1 = −1, y0,2 = 2 and
y0,3 = 3. So these are the equilibrium values. It’s not really necessary
to plot F because we can simply determine the sign in each of the
intervals (−∞,−1), (−1,2), (2,3), and (3,∞), and infer the nature of
each equilibrium.











Models Derived in this Section
We have several models involving first order ODEs.

Exponential Growth/Decay
1
1

dP
dt

= kP
1
1

RC-Series Circuit
1
1
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q = E(t)
1
1

LR-Series Circuit
1
1

L
di
dt

+ Ri = E(t)
1
1

Classical Mixing
1
1

dA
dt

= ri · ci − ro
A(t)

V (0) + (ri − ro)t
1
1

Logistic Growth
1
1
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1


