Some Calculus Related Properties of Exponentials

Function Basics: Some basic properties of the functions e* and In(z).
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Basic Properties: For each expression below, we assume that the values are well defined. For example, if we write
In(a) it is assumed that a > 0. The basic properties of exponentials and logarithms include:
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Calculus: The following derivative and antiderivative properties hold. It is assumed that f(x) is some differentiable
function, and a is a nonzero constant.
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Caution: Don’t confuse the power rule with the antiderivative of % That is,
1 1 1 1
—dzr =1Inlz|+C, but —dr=—-——+C and —dz =2z + C.
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The last two are power rules. Just because there is a ratio does not mean that the integral is a logarithm. The power
rule is
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Combining Properties: We can combine rules of exponents and logarithms using that these are inverse operations.
Some examples include
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(©) (e®)" = ¥ for any number k
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(e) e2n(z) — eln(x2) = g2

(f) ekn(@) — @) = 2k for any number &
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(i) Here’s a complicated example:

e tHn(z—1) e® (en(z—1) r—1)e* z—22 -z
(696)2 - ( o2 ) = ( 8296) = (‘T - 1)6 = (:L’ - 1)6




