Some Calculus Related Properties of Exponentials

Function	Domain	Range	Limits	Key points
e^x	$(-\infty,\infty)$	$(0,\infty)$	$\lim_{\substack{x \to -\infty \\ \lim_{x \to \infty} e^x = \infty}} e^x = 0$	$e^{0} = 1$
$\ln(x)$	$(0,\infty)$	$(-\infty,\infty)$	$\lim_{\substack{x \to 0^+ \\ \lim_{x \to \infty} \ln(x) = \infty}} \ln(x) = \infty$	ln(1) = 0

Function Basics: Some basic properties of the functions e^x and $\ln(x)$.

Basic Properties: For each expression below, we assume that the values are well defined. For example, if we write $\ln(a)$ it is assumed that a > 0. The basic properties of exponentials and logarithms include:

(a)
$$e^{x+y} = e^x e^y$$

(b) $e^{x-y} = \frac{e^x}{e^y}$
(c) $(e^x)^y = e^{xy}$
(d) $\ln(ab) = \ln(a) + \ln(b)$
(e) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$
(f) $\ln(a^r) = r \ln(a)$

(g)
$$e^{\ln x} = x$$
 (h) $\ln(e^x) = x$

Calculus: The following derivative and antiderivative properties hold. It is assumed that f(x) is some differentiable function, and a is a nonzero constant.

(a)
$$\frac{d}{dx}e^{x} = e^{x}$$

(b) $\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$
(c) $\frac{d}{dx}\ln(x) = \frac{1}{x}$
(d) $\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$
(e) $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$
(f) $\int \frac{1}{x} dx = \ln|x| + C$
(g) $\int \frac{f'(x)}{x} dx = \ln|f(x)| + C$
(g) $\int \frac{dx}{dx}e^{-1}\ln|x| + C$

(g)
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$
 (g) $\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C$

Caution: Don't confuse the power rule with the antiderivative of $\frac{1}{x}$. That is,

$$\int \frac{1}{x} dx = \ln |x| + C$$
, but $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$ and $\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$.

The last two are power rules. Just because there is a ratio does not mean that the integral is a logarithm. The power rule is

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for all } n \text{ except } -1; \quad \int x^{-1} \, dx = \ln|x| + C.$$

Combining Properties: We can combine rules of exponents and logarithms using that these are inverse operations. Some examples include

- (a) $(e^x)^2 = e^{2x}$
- (b) $(e^x)^{1/2} = e^{x/2}$
- (c) $(e^x)^k = e^{kx}$ for any number k
- (d) $e^{-\ln(x)} = e^{\ln(x^{-1})} = x^{-1}$
- (e) $e^{2\ln(x)} = e^{\ln(x^2)} = x^2$
- (f) $e^{k \ln(x)} = e^{\ln(x^k)} = x^k$ for any number k
- (g) $e^{x+\ln(x)} = e^x (e^{\ln(x)}) = e^x(x) = xe^x$
- (h) $e^{x+\ln(x+1)} = e^x \left(e^{\ln(x+1)} \right) = e^x (x+1) = (x+1)e^x$
- (i) Here's a complicated example:

$$\frac{e^{x+\ln(x-1)}}{(e^x)^2} = \frac{e^x \left(e^{\ln(x-1)}\right)}{e^{2x}} = \frac{(x-1)e^x}{e^{2x}} = (x-1)e^{x-2x} = (x-1)e^{-x}$$