## Some Calculus Related Properties of Exponentials

Function Basics: Some basic properties of the functions $e^{x}$ and $\ln (x)$.

| Function | Domain | Range | Limits | Key points |
| :--- | :--- | :--- | :--- | :--- |
| $e^{x}$ | $(-\infty, \infty)$ | $(0, \infty)$ | $\lim _{x \rightarrow-\infty} e^{x}=0$ <br> $\lim _{x \rightarrow \infty} e^{x}=\infty$ | $e^{0}=1$ |
| $\ln (x)$ | $(0, \infty)$ | $(-\infty, \infty)$ | $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$ <br> $\lim _{x \rightarrow \infty} \ln (x)=\infty$ | $\ln (1)=0$ |

Basic Properties: For each expression below, we assume that the values are well defined. For example, if we write $\ln (a)$ it is assumed that $a>0$. The basic properties of exponentials and logarithms include:
(a) $e^{x+y}=e^{x} e^{y}$
(b) $e^{x-y}=\frac{e^{x}}{e^{y}}$
(c) $\left(e^{x}\right)^{y}=e^{x y}$
(d) $\ln (a b)=\ln (a)+\ln (b)$
(e) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$
(f) $\quad \ln \left(a^{r}\right)=r \ln (a)$
(g) $e^{\ln x}=x$
(h) $\quad \ln \left(e^{x}\right)=x$

Calculus: The following derivative and antiderivative properties hold. It is assumed that $f(x)$ is some differentiable function, and $a$ is a nonzero constant.
(a) $\frac{d}{d x} e^{x}=e^{x}$
(b) $\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}$
(c) $\frac{d}{d x} \ln (x)=\frac{1}{x}$
(d) $\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}$
(e) $\int e^{a x} d x=\frac{1}{a} e^{a x}+C$
(f) $\quad \int \frac{1}{x} d x=\ln |x|+C$
(g) $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
(g) $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+C$

Caution: Don't confuse the power rule with the antiderivative of $\frac{1}{x}$. That is,

$$
\int \frac{1}{x} d x=\ln |x|+C, \quad \text { but } \quad \int \frac{1}{x^{2}} d x=-\frac{1}{x}+C \quad \text { and } \quad \int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}+C
$$

The last two are power rules. Just because there is a ratio does not mean that the integral is a logarithm. The power rule is

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad \text { for all } n \text { except }-1 ; \quad \int x^{-1} d x=\ln |x|+C
$$

Combining Properties: We can combine rules of exponents and logarithms using that these are inverse operations. Some examples include
(a) $\left(e^{x}\right)^{2}=e^{2 x}$
(b) $\left(e^{x}\right)^{1 / 2}=e^{x / 2}$
(c) $\left(e^{x}\right)^{k}=e^{k x}$ for any number $k$
(d) $e^{-\ln (x)}=e^{\ln \left(x^{-1}\right)}=x^{-1}$
(e) $e^{2 \ln (x)}=e^{\ln \left(x^{2}\right)}=x^{2}$
(f) $e^{k \ln (x)}=e^{\ln \left(x^{k}\right)}=x^{k}$ for any number $k$
(g) $e^{x+\ln (x)}=e^{x}\left(e^{\ln (x)}\right)=e^{x}(x)=x e^{x}$
(h) $e^{x+\ln (x+1)}=e^{x}\left(e^{\ln (x+1)}\right)=e^{x}(x+1)=(x+1) e^{x}$
(i) Here's a complicated example:

$$
\frac{e^{x+\ln (x-1)}}{\left(e^{x}\right)^{2}}=\frac{e^{x}\left(e^{\ln (x-1)}\right)}{e^{2 x}}=\frac{(x-1) e^{x}}{e^{2 x}}=(x-1) e^{x-2 x}=(x-1) e^{-x}
$$

