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Some of us never got over the thrill of learning projective geometry for the first time,
and why would we?

Definition. A projective plane is a set of points and lines that satisfy the following.

Al. Two points determine a unique line.
A2. Two lines determine a unique point, the point of intersection.
A3. There are four points, no three of which are collinear.

Defined by three spare, perfectly balanced axioms, the projective plane is a jewel-
like model of symmetry. Its elegance lulls us into a small rapture that shatters like
glass into unsettling consequences. What a great topic for wooing anyone who thinks
mathematics is dry!

As a natural extension of Euclidean geometry, projective geometry may—or may
not—be invited for an appearance in the geometry courses we teach math education
students and other interested parties. Aside from its importance in modern academic
geometry, projective geometry’s connections in history and culture should put it on
the A list of celebrity topics we want all our important people to meet. When we ran
across projective geometry for the first time, for example, most of us were told that,
in the form of perspective, projective geometry had its beginnings in Renaissance art,
and that it then became, not just interesting, but central to academic mathematics 450
years later—a fantastic reversal of the usual trajectory. A cogent, directed answer to the
question of how projective geometry made its strange voyage from Renaissance art to
academic mathematics—and why it took so long—is not easy to come by. Indeed, the
practice of perspective, the mathematical theory of perspective, academic projective
geometry, and the history and transmission of all of the above are distinct threads and
delicately intertwined. Disentangling them is not for the faint of heart! But experience
working with the simplest idea of perspective in art can prepare even skittish students
for a modest helping of projective geometry and, with it, a slice of history worthy of
any conversation involving cross-currents between society and culture and the world
of mathematics and science.

Starting with the use of perspective in Renaissance art, our narrative sketches a pro-
gram that can be used to introduce students at all levels to both the artistic background
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and the mathematical basis of projective geometry. Each section has exercises that
lead students to engage more directly with the mathematics through calculations and
concept discovery. In introducing students to projective geometry using historical nar-
rative and motivation, we may open their eyes and minds to the fact that mathematics,
like all human endeavors, develops within a cultural and social context.

The story we trace follows a circuitous route and elements of it may not be familiar
to all audiences. As such, readers may benefit from consulting sources cited at the
beginning of each section.

Perspective in art

Here we describe how a problem in art was addressed during the Renaissance using
the geometry and optics of Euclid. The reader may find it useful to have [3], [10] or
[12], and [15] at the ready.

The convincing representation of a three-dimensional subject on a flat surface is
a problem that artists have wrestled through the ages. There is abundant evidence,
going back to antiquity, that the ability to create pictures that tricked the eye or gave
a strong sense of space has long been highly prized [1, 13, 15]. What changed in the
Renaissance was that artists became “obsessed by mathematics™ [13] and sought rules
of perspective based on mathematical principles. The oldest surviving written rules for
perspective (by which we always mean one-point linear perspective)—one technique
among many for rendering three-dimensional scenes on a picture plane—date to 1435
with the appearance of Leon Battista Alberti’s De Pictura.

How does one address the problem of representing a three-dimensional scene on a
flat surface? Alberti’s approach is to marry Euclid’s model of vision to his geometry.
Each of the following assumptions is expressly articulated in Euclid’s Optics, either as
a definition, a theorem, or within the argument for a theorem [3].

1. Identify an observer’s eye with a point.

2. Assume vision occurs along a line between the eye and each visible point on an
object.

3. Parallel lines seen from a distance appear to grow closer together.
4. Objects seen in the same angle are perceived as having the same size.

5. The rays between a viewer’s eye and a perceived object form a cone with the eye
at the apex, the object at the base.

Exercise 1. What simplifications are implicit in the five assumptions stated above
from Euclid’s Optics? Which assumptions may be wrong and what are some possible
alternatives?

An observer whose eye is at a point O stands in front of a picture plane 7. (The
notation and terminology here are all borrowed from [1] and [7].) There is a real-
world scene behind 7 and the problem is to depict the scene on 7 just as it appears to
the observer. The point O and a visible point A in the real world determine a line that
intersects 7t at A’. The artist should depict the real world point A at A’ on the canvas.

Exercise 2. Sketch the set-up described in the previous paragraph.

Albrecht Durer (1471-1528) was an accomplished painter, engraver, and printer.
Students may recognize Diirer’s artwork (his study of hands in prayer is ubiquitous) but
they may be surprised to learn that not only was Diirer was a serious mathematician,
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Figure 1. Albrecht Diirer, Man Drawing a Lute, 1525. In the collection of the Metropolitan
Museum of Art, New York. Image from Wikimedia.

his art had mathematical content. Diirer was fascinated by perspective and went to
Italy to study it [15]. He illustrated Alberti’s methods in several pictures.

Exercise 3. What is each character doing in Man Drawing a Lute (Figure 1)? Where
are the points O, A, and A’? How will the artist in the picture accomplish his perspec-
tive drawing?

Alberti’s treatise gave a recipe for making a picture in perspective, but not an ex-
planation for why the recipe worked. Using Propositions 2 and 3 in Book XI of the
Elements [12] and the definition of conic sections as curves at the intersection of a
cone and a plane, the discovery of which is usually attributed to Menaechmus, who
was about a generation older than Euclid [15], students can themselves justify the
rules of perspective.

Exercise 4. Show that when an artist uses Alberti’s method,

(a) straight lines in the real world should be rendered as straight lines on 7,
(b) real-world parallels extending away from 7 should be depicted as convergent,

(c) conic sections—ellipses, parabolas, and hyperbolas—should be rendered as
conic sections, possibly of different types.

Perspective was of particular interest to 15th-century architects who wanted to re-
vive the classical building style. Brunelleschi, renowned architect and signal influ-
ence on Alberti, was likely “the first to paint genuine perspective compositions” [1].
Brunelleschi famously painted two architectural scenes, both lost, to show off his tech-
nique. One was of the Baptistery in Florence, an octagonal structure dating to the
11th century. The Baptistery picture was meant to be reflected in a mirror and viewed
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through a pinhole [1, 6]. The region in the picture above the building was silvered,
presumably to reflect the sky, enhancing the viewer’s sense of seeing the real world
scene itself [6].

Exercise 5. Why would Brunelleschi have insisted on the viewer observing his paint-
ing through a pinhole? Why use a mirror?

Going back to the picture plane 7 and the real-world scene to be depicted, let y
denote the ground upon which the observer stands. The line where y and the plane
of & intersect is g, the ground line (see Figure 2). The orthogonal projection of the
eye point O upon 7 is the principal vanishing point, P. The line in 7 through P and
parallel to g is the horizon, h. Orthogonals represent a collection of real-world parallel
lines extending into the distance away from g. They are depicted on 7 as converging
at P. Transversals are lines running through the orthogonals, parallel to g.

e o BB
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Figure 2. A square tiled floor in perspective.

Alberti gave instructions for rendering a square tiled floor, identified with y. The
artist places P somewhere in the picture plane. The lower edge of the canvas, g, is
divided into equally spaced subintervals, as in Figure 2. The artist constructs orthogo-
nals, to depict the right and left sides of the square tiles, by connecting P to each point
defining the partition of g. The trick is spacing the transversals correctly. Alberti’s
method for arranging the transversals exactly where they appear employs a detailed
side view of the construction with careful placement of y, 7, g, etc. [1]. He counsels
using diagonals to check whether the perspective is right, but you can use diagonals to
find correct placement of the transversals to begin with, which is what we did in Fig-
ure 2: The line connecting the lower left point of g, say, and a point at the upper right
on h—on or off 7—is a diagonal for squares in every row. Intersection points with or-
thogonals tell you how to place the transversals (see [17] for an online video tutorial).
Once you know this diagonal trick, you can experiment with renderings, which will
not only dazzle your friends but renew your respect for the artists and craftsmen who
carried out this process using hand tools and careful measurements on the wet plaster
of ceilings and walls. (See [6] for a plethora of stories, including detailed analyses of
frescoes.)

Exercise 6. Make several sketches of a square tiled floor, by hand or using vector-
based graphics software, experimenting with different vanishing points, orthogonals,
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and diagonals. Note that the square tiles establish scale at different points in the picture
plane and assume that the squares are each one foot by one foot. Using the grid and
the best of your drawing ability, put some figures into your pictures.

Exercise 7. In your perspective drawing of a tiled floor, the transversals get closer
together as they get closer to the horizon line. Where does Euclid refer to this phe-
nomenon in the Optics?

Figure 3. Andrea Mantegna, Lamentation over the Dead Christ, also known as Foreshortened
Christ, ¢.1490. In the collection of the Pinacoteca di Brera, Milan Italy. Image from Wikimedia.

Exercise 8. Can you use transversals to explain the effect that Andrea Mantegna
achieved in Lamentation over the Dead Christ (Figure 3)?

Mantegna’s spectacular illustration of foreshortening dates to around 1490, by
which time expertise in perspective had become de rigueur for Renaissance artists.
Art like this can get students thinking about scale, and about how our brains interpret
a picture to get a perception of scale, so critical in the real world, yet meaningless in
projective world. . . which brings us to projective world.

Projective geometry

Here we start with Pappus’ Theorem, not to prove, but to consider in terms of perspec-
tive. We then guide the reader to develop a few models of the real projective plane. The
reader may again want Book XI of the Elements nearby while reading this section.

Mapping real-world points into the picture plane 7 using the eye point O is cen-
tral projection through O. In Coxeter’s words, “plane projective geometry may be
described as the study of geometrical properties that are unchanged by ‘central pro-
jection™ [8].

The next exercise refers to Pappus’ Theorem, illustrated in Figure 4. Here, PQ des-
ignates the line determined by points P and Q, and PQ N P’Q’ is the point of inter-
section of lines PQ and P’'Q’.
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Figure 4. The Pappus configuration.

Exercise 9. Suppose A, B, C are points on a line £, and P, Q, R are points on a
second line m. Let X = AQNBP, Y = ARNCP, and Z = BRN CQ. In particular,
assume that all lines in question intersect. Pappus of Alexandria, the fourth-century
geometer, used the tools of Euclid’s Elements to prove that X, Y, Z must be collinear
[5]. Argue that Pappus’ Theorem, typically cited as the oldest theorem in projective
geometry, concerns a configuration unchanged by central projection.

Having lived with perspective for a little while, students may be able to ease into a
model of R P2, the real projective plane. While the idea of a line standing for a point is
itself hard to swallow, the perspective problem gives it context and a real-world point
A. Our problem is to associate to A an object P in the real world (or its idealization,
R?) that will play the role of “point” in R P2. Our only criteria for P are that it must
have a natural association to A and it must remain unchanged by central projection
of A through O. The point A’ depends only on the position of 7, but we allow 7 to
occupy any position in space. Since 7 can be placed to intersect the line OA at any
point, the line OA must itself be P. With the help of the Elements again, students can
come around to the idea that, in this model, planes through O stand for projective lines.

Each line through the origin in R? intersects the unit sphere twice. This is a second
model for R P2, the sphere with antipodal points identified. It brings new insights into
the real projective plane.

Exercise 10. If a point on the sphere model of R P? is represented by the intersection
of the unit sphere and a line through the origin in R?, how should we represent a line
on the sphere model of R P2?

Exercise 11. Suppose you stand at a point on the sphere model of R P? and your sight
lines follow projective lines. If you could see forever, what would you be looking at?

The axiomatic definition brings out other properties of projective planes.

Exercise 12. Show that the lines-through-the-origin model of R P? satisfies the ax-
ioms A1-A3. Show that the sphere model does as well.

The most naive view of RP? is a Euclidean plane that does not have parallels and
enjoys no acknowledgment of length or angle measure. A proper model of R P? based
on this idea requires appending to the Euclidean plane a point of intersection for each
family of parallel lines, the point in R P> where Euclidean parallels intersect. Inexpe-
rienced students can do the following exercise even if they have not worked through
that construction.
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Exercise 13. In Euclidean geometry, we consider quadrilaterals, arbitrary four-sided
plane figures. The projective analogue to a quadrilateral is a quadrangle. A (complete)
quadrangle is determined by four vertices, that is, four coplanar points, no three of
which are collinear. Each pair of vertices determines a side of the quadrangle. Two
sides of a quadrangle that do not intersect in a vertex are opposite. Since any two
lines in a projective plane intersect, so do opposite sides of a quadrangle. We call
the point of intersection of opposite sides a diagonal point. How many sides does a
quadrangle have? Sketch a few quadrangles using Euclidean points and lines, taking
care to arrange the points so that any two lines intersect. Identify opposite sides and
diagonal points.

The minimal configuration of points and lines that satisfies A1-A3 is called the
Fano plane. Duality is the principle that, in any projective plane, points and lines have
symmetric roles. With axioms A1-A3, students can access both the Fano plane and
duality.

Figure 5. The Fano plane.

Exercise 14. Prove that the configuration in Figure 5, a Fano plane, satisfies the
axioms for a projective plane. What are the points and what are the lines? Why does it
not work to have a smaller configuration satisfying A1-A3? Switch the roles of lines
and points and verify the axioms again this way.

Exercise 15. State the dual of axiom A3 and show that the dual property holds in a
projective plane.

Exercise 16. Show that if we take planes through the origin in R? as points and lines
through the origin as lines, then we have another model for R P2.

Exercise 17. A triangle is a set of three noncollinear points and the lines they deter-
mine. What is the dual of a triangle? Where are the triangles in the Fano plane?

Exercise 18. What is the dual of a quadrangle? Find the quadrangles in the Fano
plane. Identify opposite sides and diagonal points for the quadrangles you found. Com-
paring these quadrangles to the ones you sketched in R P2, what peculiarities do you
notice about diagonal points?

What next?

This section briefly treats Desargues’ theorem and the history of the parallel postulate.
The reader may appreciate ready access to [9, ch. 20], which treats general projective
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planes and deals with the associated algebra. Anyone rusty on the history of the parallel
postulate will benefit from having [8] at hand.

Pappus’ Theorem was the first in projective geometry and dates to the fourth cen-
tury. Desargues’ Theorem is typically cited as the second and dates to the mid-17th
century.

Consider triangles ABC and A’B’C’. If A’B’C’ is a central projection of ABC, with
O the center, then the triangles are perspective from the point O and we say O is a
point of perspectivity for the two triangles. Now assume that corresponding lines of the
triangles intersect. Let £ be the line determined by points AB N A’B” and ACN A'C’.
If BC N B'C’ also lies on £, then the triangles are perspective from the line £, which
is then the axis of perspectivity for the two triangles. Simply put, Desargues’ Theorem
says triangles are perspective from a point if and only if they are perspective from a
line (see Figure 6).

1

Figure 6. The Desargues configuration.

Exercise 19. Objects perspective from a point are related by central projection. We
understand this visually by thinking of the point of perspectivity as a point where we
can visually line up corresponding points of two objects so they appear to overlap per-
fectly. Objects perspective from a line enjoy the dual property. How can we understand
that visually?

Exercise 20. Can you find triangles in the Pappus configuration (Figure 4) that are
perspective from a point? What are the point and axis of perspectivity?

Exercise 21. Find triangles in the Fano plane that are perspective from a point. What
is their axis of perspectivity?

The geometric interpretation of Desargues’ Theorem is that it holds if and only if
the projective plane in question can be embedded in a three-dimensional projective
space. The question as to whether this is possible is connected to questions about
whether a given projective plane can be modeled using a module over a ring or a vec-
tor space over a field. A Desarguesian plane can be modeled using what is essentially a
three-dimensional vector space, which can be a subspace of a four-dimensional vector
space that models a three-dimensional projective space. General projective planes,
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the ones defined by our three axioms, can be strange kettles of fish, unable to survive
outside their own two-dimensional world. The world of finite projective planes, like
the Fano plane, is itself so mysterious that the simple question of how many points and
lines it is possible to have in such a thing remains open. These types of objects were a
long way from being recognized in the 17th century, though. Indeed, the easy case of
Desargues’ theorem is the one in which the triangles occupy two different planes, the
case most closely related to the real-world perspective problem. Desargues captured
the connection between two and three dimensions quite consciously in his theorem,
(see the notes in [14]), which properly belongs to projective geometry rather than the
theory of perspective.

Desargues’ work on projective geometry, while of enduring value, slipped almost
directly from Desargues’ hands into obscurity, where it remained for 200 years [15].
It was not until well after the appearance of Jean-Victor Poncelet’s work, the first
comprehensive treatise on projective geometry, which was finally published in toto in
1868, that projective geometry was fully recognized in the academy. It was perhaps
Felix Klein’s work that gave projective geometry that final push, but well may we ask,
what took so long?

Western Europe from the Renaissance through the 18th century was fertile ground
for mathematics, but during those 500 years, academic geometry labored beneath a
cloud that grew darker and more menacing with each succeeding generation: the con-
troversy surrounding Euclid’s Fifth Postulate. It is exquisite irony that the resolution
of the controversy meant at once that Euclid was correct in taking the existence of
unique parallels as an assumption, not a theorem, and at the same time that space was
not necessarily Euclidean. Lobachevsky and Bolyai initiated the resolution of the con-
troversy with their discoveries of the consistency of non-Euclidean geometries in the
early 19th century. The controversy was entirely resolved by the end of the century
with the work of Beltrami, Poincaré, and Klein, each of whom developed models of a
hyperbolic plane constructed inside Euclidean space. It was in 1854, though, that the
true weight of the discovery of non-Euclidean geometries was brought fully to bear
on the collective imagination of the mathematics community in Europe. In that year,
Riemann delivered his post-doctoral (Habilitation) lecture on the foundations of ge-
ometry. He may as well have delivered a thunderbolt. In his lecture, Riemann tendered
the concept of an n-manifold, a space of arbitrary dimension, a space that itself may be
curved [14]. The work astounded everyone—most importantly, Gauss—and it changed
everything, deeply, for good. In terms of subject matter, Riemann’s work had nothing
to do with perspective or with projective geometry, but there was a critical cultural
connection.

Riemann’s work freed people to think of space and the foundations of geometry in
a new way. Sophus Lie’s work on transformation groups, Einstein’s theory of relativ-
ity, and Klein’s Erlanger Programm can all be traced to Riemann’s influence. Klein,
one of the people who worked out the coordinatization of projective geometry, also
understood its applications to non-Euclidean geometries [S]. Thus, by late in the 19th
century, led by the hand of Felix Klein, a giant of mathematics and its pedagogy, pro-
jective geometry had become, to paraphrase Arthur Cayley, all geometry [5].

Conclusion

This narrative is a simplification of a story with many players and byzantine com-
plexity. The hope is that it might serve as a springboard for further study of geometry
by students with general backgrounds. An object of simplicity, beauty, and ubiquitous
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utility, the projective plane begs to be featured in courses for general audiences. It
amply rewards students and instructors with more questions than answers.

The list of references at the end of the paper includes sources for mathematics
courses for liberal arts students or art courses for students willing to take on some
mathematical ideas, among them [7, 11, 13]. A source for the intrepid that assumes
limited mathematical experience in a treatment of the nature of space and topology
is [16]. A lively and expert source on Renaissance art and mathematics is [6]. Cov-
ering the history of perspective in great detail is [1]. Anyone interested in the history
of the controversy surrounding the parallel postulate will be rewarded by reading [8].
For a more advanced and algebraic take on projective geometry, see [2]. Sources on
mathematics history are abundant and well-known, but [15] is particularly good for
geometry. Perhaps less well-known but amply edifying is [4]. Anyone interested in the
history of mathematics will enjoy the Heath edition of the Elements of Euclid [10].
David Joyce’s website treatment of the Elements is a wonderful source that students
should be encouraged to explore [12]. Anyone with more than a passing interest in
projective geometry should study [S].

Acknowledgment. The author thanks the referees and the editor for their careful reading and
thoughtful suggestions.

Summary. This article treats projective geometry as arising from the perspective problem ad-
dressed by Renaissance artists while sketching a program for teaching the material to students
at all levels.
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