Calculus IV Homework 3

Mikhail Lavrov

due Friday, September 20, 2024

1. Let $\mathbf{F} = x^2 \mathbf{i} - y^2 \mathbf{k}$, and let C be the triangular path from (1,0,0) to (0,1,0) to (0,0,1) back to (1,0,0) shown in the diagram below.

Find the circulation of \mathbf{F} around C.

- 2. Let $\mathbf{F} = \mathbf{i} + x^2 \mathbf{j}$, and let C be the boundary of the region $\{(x, y) : x^2 + y^2 \leq 1 \text{ and } x \geq 0\}$: the right half of the unit disk. Find the outward flux of \mathbf{F} across C.
- 3. Determine whether these vector fields are gradient fields, and if they are, find a potential function for them.
 - (a) $\mathbf{F} = 4x^2y\,\mathbf{i} + \frac{4}{3}(x^3 y^3)\,\mathbf{j}.$
 - (b) $\mathbf{G} = z \cos(y+z) \mathbf{i} xz \sin(y+z) \mathbf{j} xz \sin(y+z) \mathbf{k}.$
 - (c) $\mathbf{H} = (x+y)\mathbf{i} + (x-z)\mathbf{j} (y+z)\mathbf{k}.$
- 4. (a) Let $f(x, y, z) = xe^{y-z}$. Compute the gradient field $\mathbf{F} = \nabla f$.
 - (b) Let C be the coiled spring parameterized by $\mathbf{r}(t) = (\cos t, \sin t, t/\pi)$, where $t \in [0, 4\pi]$. Compute the vector line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is the gradient field from part (a).
- 5. Let \mathbf{F} be an unknown, but conservative, vector field. Define paths
 - C_1 , the line segment parametrized by $\mathbf{r}_1(t) = (2t 1, 0)$, where $t \in [0, 1]$.
 - C_2 , the quarter-circle parametrized by $\mathbf{r}_2(t) = (\cos t, \sin t)$, where $t \in [0, \pi/2]$.
 - C_3 , the parabolic curve parametrized by $\mathbf{r}_3(t) = (t^2 1, -t)$, where $t \in [0, 1]$.
 - C_4 , the cubic curve parametrized by $\mathbf{r}_4(t) = (t^3 t, t)$, where $t \in [-1, 1]$.

If
$$\int_{C_1} \mathbf{F} \cdot dr_1 = 2$$
, $\int_{C_2} \mathbf{F} \cdot dr_2 = 3$, and $\int_{C_3} \mathbf{F} \cdot dr_3 = 4$, find $\int_{C_4} \mathbf{F} \cdot dr_4$