Calculus IV Homework 7

Mikhail Lavrov

due Friday, November 8, 2024

- 1. Find the curl of the following vector fields:
	- (a) $\mathbf{F} = \cos(e^x) \mathbf{i} + \sqrt{y^3 + y^6 + y^7} \mathbf{j} + z^{1 + \tan^2 z} \mathbf{k}.$
	- (b) $\mathbf{F} = yz \mathbf{i} 2xz \mathbf{j} + xy \mathbf{k}$.
	- (c) $\mathbf{F} = xy \cos z \mathbf{i} + xy \cos z \mathbf{j} + xy \cos z \mathbf{k}$.
- 2. Each part of this problem gives you a surface S with a parameterization. Use that surface parameterization to find four parameterizations $\mathbf{r}_1(t), \mathbf{r}_2(t), \mathbf{r}_3(t), \mathbf{r}_4(t)$ for the boundary of S. Then, list which (if any) of these boundaries cancel with each other, and which (if any) are trivial; briefly describe the remaining boundaries geometrically.

(example) The cylinder parameterized by $\mathbf{r}(u, v) = (\cos u, \sin u, v)$, where $(u, v) \in [0, 2\pi] \times [0, 3]$.

Solution: the four parameterizations we get for the boundary are are

Here, $\mathbf{r}_1(t)$ and $\mathbf{r}_3(t)$ are circles around the top and bottom edges of the cylinder, and $\mathbf{r}_2(t)$ and $\mathbf{r}_4(t)$ cancel with each other.

- (a) The portion of the unit sphere with $x \geq 0$, $y \geq 0$, and $z \geq 0$, which is parameterized by $\mathbf{r}(u, v) = (\cos u \sin v, \sin u \sin v, \cos v), \text{ where } (u, v) \in [0, \pi/2] \times [0, \pi/2].$
- (b) The portion of the paraboloid $x = y^2 + z^2$ with $0 \le x \le 1$, which is parameterized by $\mathbf{r}(u, v) = (u^2, u \cos v, u \sin v), \text{ where } (u, v) \in [0, 1] \times [0, 2\pi].$
- 3. Let S be the portion of the cone with equation $z^2 = x^2 + y^2$ which lies between the planes $z = 1$ and $z = 2$, oriented so that the normal vectors point inward and upward.
	- (a) Give S a parameterization of the form $\mathbf{r}(u, v)$, where $(u, v) \in [a, b] \times [c, d]$, making sure to be consistent with the orientation of S we want.
	- (b) As you did in problem 2, use this parameterization to find the boundaries of S.
	- (c) Let **F** be the vector field $xy\mathbf{i} + z^2\mathbf{j} (x z)\mathbf{k}$. Stokes' theorem relates the curl integral of **F** over S to the circulation integral of **F** along the boundary of S. The surface in this

problem has two boundaries which we can call C and C' . This means that in this case, Stokes' theorem tells us that

$$
\iint_S \underline{\hspace{1cm}} \mathrm{d}y \wedge \mathrm{d}z + \underline{\hspace{1cm}} \mathrm{d}z \wedge \mathrm{d}x + \underline{\hspace{1cm}} \mathrm{d}x \wedge \mathrm{d}y = \int_C \underline{\hspace{1cm}} \mathrm{d}x + \underline{\hspace{1cm}} \mathrm{d}y + \underline{\hspace{1cm}} \mathrm{d}z + \underline{\hspace{1cm}} \mathrm{d}z + \underline{\hspace{1cm}} \mathrm{d}z.
$$

Fill in the blanks, and describe C and C' geometrically. You do not have to evaluate the integrals.

4. Let S be the rectangle in the plane $y + z = 1$ which has corners at $(0, 0, 1)$, $(1, 0, 1)$, $(1, 1, 0)$, and $(0, 1, 0)$, oriented so that the normal vectors point away from the origin.

Find the curl integral of $\mathbf{F} = xyz \mathbf{i} - xz \mathbf{j} + y^2 \mathbf{k}$ over S.

- 5. The cone $z^2 = x^2 + y^2$ and the plane $x = 2z 3$ intersect in an ellipse C which has parame-The cone $z^- = x^- + y^-$ and the plane $x = 2z - 3$ intersect
terization $\mathbf{r}(t) = (1 + 2 \cos t, \sqrt{3} \sin t, 2 + \cos t), t \in [0, 2\pi].$
	- (a) Find the circulation of $\mathbf{F} = y\mathbf{i} x\mathbf{j}$ around C (using the parameterization above). We covered circulation integrals much earlier this semester, but you should still remember how to do them!
	- (b) The portion of the cone above the xy-plane but below the plane $x = 2z 3$ is a surface with boundary C. One way to take a flux integral across this surface is to treat it as a surface defined by the implicit equation $x^2 + y^2 - z^2 = 0$ above a region R in the xy -plane.^{[1](#page-1-0)}

Write down a curl integral over S which is equal to the circulation of $\mathbf{F} = y \mathbf{i} - x \mathbf{j}$ around C , and transform it into a double integral over R with respect to x and y .

(c) Use parts (a) and (b) to determine the area of R .

¹More precisely, R happens to be the interior of another ellipse: it is the region defined by $3(x-1)^2 + 4y^2 \le 12$.