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Lecture 7: Two-phase simplex methods
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1 The problem with initialization

1.1 A tricky example
Consider the following problem:

Problem 1. You have an important assignment due in 5 hours. You’re working on it in a coffee
shop, and so you’re trying to bribe yourself to work on it by a combination of fancy coffee and sweet
tea.

You’ll need at least one cup an hour to keep you focused. To stay awake until the assignment is
due, you’ll need at least 7 “units” of caffeine (if we say a unit of caffeine is the amount in a cup of
tea; there’s 3 unit in a cup of coffee). Finally, to have the energy to work on the assignment, you
need at least 6 units of sugar (the amount in a cup of coffee; a cup of sweet tea has 2 units).

If every cup of coffee costs $4.50 and every cup of tea costs $3, what is the cheapest way to make
this work?

We can write this problem as follows:

m;{{iggleiﬂz{e 4.5x1 + 3x9 ml;}g?&i%i’zggem 4.5x1 + 3x2
subject to 1+ x9>5H subject to —x1 — T+ w = -5
3x14+ x20>7 7 —3x1 — T9 + w2 =7
x1+ 229 > 6 —x1 — 229 + w3 = —6
x1,x2 20 x1, T2, w1, wz, w3 = 0

The difficulty in adapting our methods to this problem is this: how do we find an initial basic
feasible solution?

1.2 The problem in general

In the previous lecture, we relied on a shortcut for starting the simplex method: we assumed
that the point x = 0 is feasible for our linear program. This naturally happens, for example, in
production problems where all our constraints are resource constraints: they put upper bounds on
how big x1,x9,...,x, get, but no lower bounds.

However, not all linear programs look like this! In particular, in the linear program above, none of
our constraints are satisfied when x = 0, except for the nonnegativity constraints.

We’ll distinguish between two cases where starting with x = 0 does not make sense:
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e (Easier case) All our constraints are inequality constraints, which we’ll have to add slack
variables to before getting a problem in equational form.

e (Harder case) We are dealing with a problem that’s already in equational form (Ax = b
where x > 0), possibly because we started out with some equational constraints.

In both cases, the solution is the two-phase simplex method. In this method, we:

1. Solve an auxiliary problem, which has a built-in starting point, to determine if the original
linear program is feasible. If we succeed, we find a basic feasible solution to the original linear
program.

2. From that basic feasible solution, solve the linear program the way we’ve done it before.

The auxiliary problem will be easier to state, and have fewer additional variables, in the case we’re
calling the “easier cases”—such as the example problem. So we will begin there.

2 The two-phase method for inequalities

We adjust our problem by adding a new artificial variable x( that lets us violate each constraint
by some amount. When we replace an a < b constraint by a — xg < b, this lets us violate the
original constraint by a margin of up to xg. No matter what our other variables are set to, if we
make xg large enough, we can satisfy every equation.

Of course, we don’t want to make xy large, because we’re not interested in solutions that violate
all our constraints. So our first step will be to minimize an auxiliary objective function: we
will minimize £ = zg. If we can get x¢p down to 0, then we’re not violating any constraints, and so
we have a feasible solution for our original problem!

(Note: this is a slight departure from how the problem is described in the textbook; the textbook has
not yet introduced minimization problems, and so it describes everything in terms of maximizing
—&. Also, feel free to use a different variable instead of £ (i) if you have trouble writing £.)

This is called the phase one problem. Here is the full description, in our original example:

minimize To
T0,T1,T2,W1,w2,w3ER
subject to —x1 — T+ w; —x9=—-H
—3931 — T2 —+ wo — Xy = -7
—x1 — 229 + w3 —xg = —6

To,T1,T2,W1, W2, W3 Z 0

As usual, we'll set 1 = 22 = 0 in our initial feasible solution. We’ll need to set xg = 7, because
that’s the largest number on the right-hand side. Then we = 0 satisfies our second equation, and
we can set w1 =7 —5 =2 and w3 =6 — 5 = 1 to satisfy the second and third equation.

That’s an unsystematic description of how we get our initial dictionary, though. We begin by taking



our basic variables to be wq, ws, ws:

E= 0 + o
wy =—5+ w1+ T2+ o
wy = —T7+3x1+ x2+ x0
wy =—6+ x1+ 222 + 29

This is not feasible: all three of wy, w2, w3 are negative in the basic solution. Our first step in the
phase one problem is always, ignoring any pivoting rules, to bring xg into the basis, and take wy
(the variable with the most negative value) out of the basis. This is guaranteed to lead us to a
feasible dictionary:

E=T7T—3x1 — 20 +wo

wy, =2 — 211 =+ w9

130:7—31'1—1'24-’(02
w3:1—2x1—|—$2+w2

(It will always be the case that the equation for ¢ at the top matches the equation for xz¢, for as
long as zq is a basic variable. I will keep writing the same equation in both places, just to match
the usual way we write a dictionary.)

Now we can proceed to solve this linear program in the usual way. Since we’re minimizing &, we
should pivot on entries that have a negative reduced cost. In this example, pivoting on x5 turns
out to be the best choice. The only possible leaving variable is z( (since it is the only one with a
negative coefficient on zs. Solving xg’s equation for xo gives x9 = 7 — 3x1 + wo — xg, and then we
will just substitute that in for x5 in the other equations:

§=T7—3x1+wy — (7T— 3z +wy — x0) £E=0 + xg
w; =2 —2x] + wo w; =2—2x1+ wo

To ="T7—3x1 + wy — o ” To=T7—3x1+ wo — xg
w3z =1—2x1 +way + (7 — 3z + wy — ) ws = 8 — by + 2wy — 29

The phase one problem is solved once the objective value reaches 0, which typically happens exactly
when x( leaves the basis. Once this happens, we can solve the phase two problem: the one we
started with! To get there, we:

1. Remove zq from the dictionary; we no longer need it.

2. Replace the artificial objective function & by the original objective function (, expressed in
terms of the current basic variables.

In this case our original objective is to minimize { = 4.5x1 4+ 3x5. Substituting xo = 7 — 31 4+ wo
gives us ( = 21 — 4.5z; — 3ws, so our new dictionary is:

¢ =21—4.5z1 + 3ws

wy = 2— 2x1+ wy

To= T7T— 3xr1+ wy
w3 = 8 — 51’14‘2102



Since we are minimizing ¢, the only good choice of entering variable is 1. Comparing the ratios %, %,

and %, we see that w; must leave the basis. Solving w;’s equation for x1, we get x1 = 1— %wl + %wg.
Now we substitute that into the other equations:

¢ =21—-45(1— fw; + Sws) + 3ws ¢ =16.5 + 2.25wy + 0.75ws
r1= 1-— %wl + %wg . = 1- %wl + %wg
za= T— 3(1— 3w+ Jw)+ wo o= 44+ Swi— lw
wy = 8— 5(1— Jwi+ sws) + 2w, wy= 34+ Swi— Fuw

Since we are minimizing ¢ and all our reduced costs are nonnegative, we have found the optimal
solution. With 1 cup of fancy coffee and 4 cups of sweet tea (exceeding our sugar minimum by 3
units), we have found the cheapest combination of drinks, costing $16.50.

3 The general two-phase simplex method

Suppose we have a general linear program in equational form: our constraints are written as Ax = b,
with x > 0. Our approach in the previous section relied on having inequality constraints, so it no
longer applies.

One silver lining is that we can always make the right-hand side nonnegative. An equation constraint
can always be multiplied by —1 and remain valid (unlike an inequality constraint, which reverses
when it is multiplied by —1). So let’s assume that b > 0.

The solution here is to introduce artificial slack variables to the problem. We turn the problem
Ax = b into the problem Ax < b, and then add slack variables w1, ws, ..., w,, > 0 to turn it back
into equational form. (In matrix form, this looks like Ax + Iw = b.)

What’s the point? Well, because we’ve assumed b > 0, the new is a problem for which the two-
phase simplex method is not necessary: if we make the slack variables wq,ws, ..., w,, our basic
variables, we get an initial basic feasible solution.

As before, we introduce an artificial objective function to optimize in the phase one problem. In
this case, our slack variables w1, wo, ..., w,, are artificial: they do not belong in the problem, since
we want to have Ax = b and not just Ax < b. So we decide to minimize £ = w1 + wg + « - - + Wy
the sum of the slack variables. If we can get it down to 0, then we get a solution where Ax = b,
and then we can proceed to the phase two problem.

For example, suppose that we have the following constraints:
r1+a2+ a23= 1
63?1 — 23}3 = 1

201 4+ 20 — 323 = —1

T1,T2,T3 > 0

Our first step is to rewrite the third constraint as —2x1 —x9+3x3 = 1, so that all the numbers on the



right-hand side are positive. Now we are ready to insert artificial slack variables w1, we, ws:

r1t+x2+ x3+w =1
61 — 2x3 =+ w9 =1
—2x1 — T2 + 373 +wz =1

T1, T2, T3, w1, w2, w3 >0

Our objective function for the phase one problem is & = w; + ws + w3, but that’s phrased entirely
in terms of the basic variables. We must substitute wy =1 — 1 — x9 — x3, wg = 1 — 61 + 2z3,
and wg = 1+ 2x1 + 22 — 3x3 to get the objective function in the form we want. If we do, then &
simplifies to 3 — bx1 — 2x3, and we get the initial dictionary

§:3—5l’1 —2$3

w1:1— Tr1 — Ty — I3

?.U2:1—633‘1 +2£L‘3
w3y =1+ 2x1 + 22 — 323

As before, we will proceed to minimize &, hoping to get to O.

4 Troubleshooting

There are several unexpected things that can go wrong in the two-phase simplex method.

It is possible that we can never get the artificial objective function £ down to 0. This is an indicator
that our original problem did not have a feasible solution! Although this is disappointing for the
problem we were trying to solve, it’s convenient for the solver: now we can skip phase two.

In most cases, we expect that £ will hit 0 at the same time that our artificial variable(s) leave the
basis. After all, if £ = 0, then zo (from our first two-phase method) or the artificial slack variables
Wi, ..., Wy, (from our second method) must all be 0, which is the sort of thing nonbasic variables
generally do. However, it is possible for these variables to be basic and still be equal to 0.

In such a degenerate case, we can make some quick final adjustments. If an artificial variable is
equal to 0 but still basic, pick any nonbasic, non-artificial variable in its equation, and do a pivot
step to replace the artificial variable by that nonbasic variable—ignoring our usual pivoting rules.
Because both variables will remain equal to 0, this will not change the value of any other variables,
so this pivot step preserves feasibility.

In our second two-phase method, an even weirder thing can happen. It’s possible that:
e The artificial objective function £ has reached 0;
e Some artificial slack variable w; is still basic;
e There are no non-artificial variables in w;’s equation to replace it with!

If this happens, just forget that equation entirely. What this means is that one of the equations in
the system Ax = b was redundant; it could be deduced from the others. Once we eliminate the
artificial slack variables, the redundant equation becomes 0 = 0; we don’t need it.
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