Calculus IV Homework 3

Mikhail Lavrov

due Friday, February 17, 2023

1 Exercises

1. Let $\mathbf{F}=2 y \mathbf{i}+y \mathbf{j}$.
(a) Draw a sketch of \mathbf{F} in the region $-2 \leq x \leq 2,-2 \leq y \leq 2$.
(b) Find the flux integral of \mathbf{F} around the boundary of the region bounded by the parabola $y=x^{2}$ and the line $y=1$.
2. Determine whether these vector fields are gradient fields, and if they are, find the potential function.
(a) $\mathbf{F}=z \cos y \mathbf{i}-x z \sin y \mathbf{j}+\left((z+1) e^{z}+x \cos y\right) \mathbf{k}$.
(b) $\mathbf{G}=2 x y z \mathbf{i}+x^{2} z \mathbf{j}+x y^{2} \mathbf{k}$.
3. Find a potential function for $\mathbf{F}=\left(y+e^{x-y}\right) \mathbf{i}+\left(x-e^{x-y}\right) \mathbf{j}$, and use it to find the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{r}(t)=(\cos t, \sin t)$ for $0 \leq t \leq \frac{3 \pi}{2}$.

2 Harder problems

4. Let \mathbf{F} be an unknown, but conservative, vector field. Define paths

- C_{1}, the line segment parametrized by $\mathbf{r}_{1}(t)=(2 t-1,0)$ for $0 \leq t \leq 1$.
- C_{2}, the quarter-circle parametrized by $\mathbf{r}_{2}(t)=(\cos t, \sin t)$ for $0 \leq t \leq \frac{\pi}{2}$.
- C_{3}, the parabolic curve parametrized by $\mathbf{r}_{3}(t)=\left(\frac{-t-t^{2}}{2}, \frac{t-t^{2}}{2}\right)$ for $-1 \leq t \leq 1$.
- C_{4}, the cubic curve parametrized by $\mathbf{r}_{4}(t)=\left(t, t^{3}-t\right)$ for $-1 \leq t \leq 1$.

If $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1}=1, \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}_{2}=2$, and $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}_{3}=3$, find $\int_{C_{4}} \mathbf{F} \cdot d \mathbf{r}_{4}$.
5. The path C parametrized by $\mathbf{r}(t)=(t \cos t, t \sin t, t)$ as $\frac{\pi}{2} \leq t \leq \pi$ winds around a portion of the cone $z^{2}=x^{2}+y^{2}$. You decide to compute the integral

$$
\int_{C}\left(\frac{x \mathbf{i}+y \mathbf{j}+0 \mathbf{k}}{x^{2}+y^{2}+z^{2}}\right) \cdot d \mathbf{r}
$$

but then you spot a shortcut: the closely related vector field $\mathbf{F}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{x^{2}+y^{2}+z^{2}}$ is conservative, with potential function $\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)$.
(a) Find the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (This shouldn't actually require taking integrals.)
(b) Use your answer to (a) to replace the integral $\int_{C}\left(\frac{x \mathbf{i}+y \mathbf{j}+0 \mathbf{k}}{x^{2}+y^{2}+z^{2}}\right) \cdot d \mathbf{r}$ you actually want by a much easier integral, then take that integral.

