Calculus IV Homework 4

Mikhail Lavrov

due Friday, March 3, 2023

1 Exercises

1. Find the circulation density and the flux density of each of the following vector fields:
(a) The vector field $\frac{\mathbf{i}+\mathbf{j}}{x+y}$.
(b) The vector field $e^{x}(1+\sin y) \mathbf{i}+e^{x} \cos y \mathbf{j}$.
2. Find the flux density of $\mathbf{F}=x^{2} y \mathbf{i}+x y^{2} \mathbf{j}$, and use it to find the outward flux of \mathbf{F} across the boundary of the unit square $\{(x, y): 0 \leq x, y \leq 1\}$.
3. On the practice exam, I asked you to find the (counterclockwise) circulation of $\mathbf{F}=x \mathbf{i}+x y \mathbf{j}$ around the closed curve C parameterized by

$$
\mathbf{r}(t)=\left\{\begin{array}{lr}
(-t,-t) & -1 \leq t \leq 0 \\
\left(t, t^{2}\right) & 0 \leq t \leq 1
\end{array}\right.
$$

Now that we know Green's theorem, we can solve the same problem more easily.
(a) Find the circulation density of \mathbf{F}, as a function of x and y.
(b) Describe the region bounded by C by giving bounds on x and y.
(c) Find the circulation around C by integrating the circulation density over that region.

2 Harder problems

4. For each part of this problem, come up with an example of a 2-dimensional vector field with the required properties.
(a) A nonzero vector field for which both the circulation density and the flux density are 0 .
(b) A vector field for which the circulation density and flux density are both a positive constant at every point.
(c) A conservative vector field for which the flux density at (x, y) is proportional to $x^{2}+y^{2}$.
5. The vector field $\mathbf{F}=4 y \mathbf{i}+x^{2} \mathbf{j}$ is not conservative. However, the circulation around some closed curves will still be 0 .

Find a circle of radius 1 (a circle parameterized by $\mathbf{r}(t)=(a+\cos t, b+\sin t)$ as $0 \leq t \leq 2 \pi)$ such that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$. (This can be done the hard way, but it is also possible to solve this problem without taking any integrals.)

