Calculus IV Homework 6

Mikhail Lavrov

due Friday, March 31, 2023

1 Exercises

1. For each of the following shapes, describe their "shadows" or projections onto each of the $x y$-, $x z$-, and $y z$-planes. If you prefer to draw a picture, that is sufficient, but be sure your proportions are roughly correct.
For example, if I gave you a vertical cylinder, then its projection onto the $x y$-plane would be a disk, and its projections onto the other two planes would be rectangles.
(a) A cone of height 2, standing upright, whose base is a circle of radius 1.
(b) The flat triangle with corners at the points $(1,0,0),(0,2,0)$, and $(0,0,3)$.
(c) The torus from the first homework assignment, whose diagram I am reusing:

2. Integrate $f(x, y, z)=z$ over the surface parameterized by

$$
\mathbf{r}(u, v)=(\cos v, \sin v, u(1+\cos v))
$$

where $0 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
3. Find the flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the portion of the surface $z=x y$ where $0 \leq x \leq y \leq 1$.
(Hint: look for a parameterization with $x=u$ and $y=v$, but keep in mind that the domain of the parameterization is not rectangular.)

2 Harder problems

4. Find the center of mass of a thin conical shell whose shape is given by the equation $z=$ $\sqrt{x^{2}+y^{2}}$ for $0 \leq z \leq 1$, and whose density (mass per unit area) is given by $\delta(x, y, z)=1+z$.
5. Let M be the surface with the parameterization

$$
\mathbf{r}(u, v)=\left(\left(2+v \cos \frac{u}{2}\right) \cos u,\left(2+v \cos \frac{u}{2}\right) \sin u, v \sin \frac{u}{2}\right)
$$

where $0 \leq u \leq 2 \pi$ and $-1 \leq v \leq 1$.
(a) Use a computer tool to graph the surface; attach a screenshot as a separate file to your homework submission.
(If you do not have a preferred computer tool, Wolfram Alpha is fairly straightforward to use; ask it for a "3d parametric plot" and then include the necessary details. Stop by office hours or send me an email if you've been trying for a few minutes and can't get it to work.)
(b) Let $\mathbf{F}=\mathbf{k}$ (the vector field that points directly upward). Compute the flux of \mathbf{F} across M using the formula

$$
\iint_{R} \mathbf{F} \cdot\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) d u d v
$$

(Hints: a lot of the work in computing $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$ can be skipped; a lot of terms simplify or cancel; choose wisely between integrating $d u d v$ and $d v d u$.)
(c) Explain what's wrong with the calculation in (b).

