Calculus IV Homework 8

Mikhail Lavrov

due Friday, April 28, 2023

1 The divergence theorem

1. Find the outward flux of $\mathbf{F}=(x+2 y) \mathbf{i}+(3 z+4 x) \mathbf{j}+(5 y+6 z) \mathbf{k}$ across the sphere of radius 2 (that is, given by the equation $x^{2}+y^{2}+z^{2}=4$) by using the divergence theorem.
2. Let S be the portion of the surface $z=\left(x^{2}-1\right)\left(y^{2}-1\right)$ bounded by $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$, which is graphed below; note that when $x= \pm 1$ or $y= \pm 1$ on this surface, $z=0$. Let S be oriented with upward normal vectors.

Let Q be the square bounded by $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$ in the plane $z=0$, and let R be the three-dimensional region that lies between Q and S.

Suppose we want to measure the flux of $\mathbf{F}=x^{3} \mathbf{i}+z^{2} \mathbf{j}+x^{2} z \mathbf{k}$ across S. Use the divergence theorem to express this flux in terms of a double integral over Q and a triple integral over R.

You do not have to evaluate these integrals, but you should simplify them to straightforward iterated integrals.

2 Review exercises

3. Find parameterizations of the following curves:
(a) A line segment from the point $(1,0,-2)$ to the point $(0,1,3)$.
(b) A circle of radius 2 in the plane $y=0$ centered at the point $(-1,0,1)$.
(c) The curve that follows the upside-down paraboloid $z=2-x^{2}-y^{2}$ in the plane $x=y$ from $(-1,-1,0)$ to $(1,1,0)$.
4. (a) Find the gradient of $f(x, y, z)=x e^{x+y+z}$.
(b) Find the flow of the gradient field you found in part (a) over each of the curves parameterized in the previous problem.
5. The solid cube with boundaries $0 \leq x \leq 1,0 \leq y \leq 1$, and $0 \leq z \leq 1$ is cut in half by the plane $z=1-\frac{1}{2} x-\frac{1}{2} y$ (that is, we consider only the half satisfying $z \leq 1-\frac{1}{2} x-\frac{1}{2} y$), as shown below.

Find the centroid of the remaining half of the cube.

