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1 What are differential forms?

Differential forms are meant to represent all the (sufficiently nice) things we can evaluate or integrate
over some (sufficiently nice) region in Rn. I will stick to R3 in these notes, but everything generalizes
to higher dimensions without effort if you want to try.

In R3, differential forms come in four types:

• The 0-forms, which are smooth (infinitely differentiable) functions f : R3 → R.

• The 1-forms: expressions of the form M dx+N dy + P dz where M , N , and P are 0-forms.

For the most part, we will not need to think too hard about what dx is, just as we have
not thought too hard about it too hard in the past. “An infinitesimal change in the positive
x-direction” is probably good enough to go on.

• The 2-forms: expressions of the form U dy dz + V dz dx + W dx dy where U , V , W are
0-forms.

Here, a similarly not-quite-rigorous way of thinking about dx dy is as “an infinitesimal square
parallel to the xy-plane, oriented with a normal vector in the positive z-direction”. The
“oriented” bit is important; dy dx will be oriented in the opposite way.

• The 3-forms: expressions of the form g dx dy dz, where g is a 0-form.

In practice, every time we have a scalar field in this class, we can think of it as either a 0-form or a
3-form; every time we have a vector field, we can think of it as either a 1-form or a 2-form.

Which one to pick? Sometimes there is a right answer to that—rotation vectors should be rep-
resented by 2-forms, not 1-forms. Since we will not go too far into the depths of working with
differential forms, we will generally just pick whichever one is convenient.

2 The exterior product

The first useful thing we get out of thinking of our scalar fields and vector fields as differential
forms is the exterior product. This is an operation that lets us multiply two differential forms to
get another. It will generalize operations like dot product and cross product that you are familiar
with from vector calculus (and in higher dimensions, it can do other, weirder things).
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(A note on notation: when people seriously work with differential forms, they often use the symbol
∧ for exterior product, writing (x2 dx+2xy dy)∧ (xyz dz) for the exterior product of x2 dx+2xy dy
with xyz dz. We will not do this, because there will be no other products to be confused with, so it
will just make everything scarier.)

Defining the exterior product is a lot like teaching you how to multiply complex numbers when
you already know how to multiply real numbers. By distributing, we can simplify a product
(a + bi)(c + di) to get ac + (ad + bc)i + bdi2. All we need to be told is that i2 = −1, and we can
simplify this product to its final form (ac− bd) + (ad+ bc)i.

Similarly, in order to multiply differential forms, we just need to know how to multiply the dif-
ferential elements dx, dy, and dz. Part of the answer to how to do this is this: just leave the
product alone! The exterior product of dx and dy is just dx dy. Differential elements commute
with 0-forms, so if we multiply x dx by x dy, we can write the product as x2 dx dy: the product
of two 1-forms is a 2-form.

But if you multiply out an expression like (x dx− y dy)(x dx+ y dy), what you get is

x2 dx dx+ xy dx dy − xy dy dx− y2 dy dy.

This looks a lot like a 2-form, but only one term of it is part of how we described 2-forms: the
xy dx dy term.

To get the rest of the expression there, we have two rules for multiplying differential elements:

1. For any two variables u and v, we have dudv = −dv du.

The intuition here is that du dv is an infinitesimal oriented square, and dv du is the same
square oriented with the opposite orientation.

2. For any variable u, we have du du = 0.

We can deduce this from the previous rule: we should be able to swap the two differentials,
so we should have dudu = −dudu, and only 0 has this property.

The other intuition is that a product dudv is supposed to represent a square with sides
parallel to du and dv; more generally, if these vectors were not perpendicular, we would have
a parallelogram. But a parallelogram with adjacent sides both parallel to du has area 0.

These rules let us simplify the product in the example above:

(x dx− y dy)(x dx+ y dy) = x2 dx dx+ xy dx dy − xy dy dx− y2 dy dy

= x2(0) + xy dx dy − xy(−dx dy)− y2(0)

= xy dx dy + xy dx dy

= 2xy dx dy.

So that’s how to compute the exterior product; but what does it do? The answer is: it does
everything!
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In general, multiplying a k-form by an l-form will give a (k + l)-form. If k + l is bigger than the
dimension we’re working in, we’ll always get 0, due to the rule that dudu = 0. Also, multiplying
by a 0-form is the same as multiplying by a scalar. So the two interesting cases to look at in R3

are: multiplying two 1-forms, and multiplying a 1-form with a 2-form.

If we multiply two 1-forms (M1 dx+N1 dy+P1 dz)(M2 dx+N2 dy+P2 dz), we get a 9-term product:

M1M2 dx dx +M1N2 dx dy +M1P2 dx dz
+N1M2 dy dx +N1N2 dy dy +N1P2 dy dz
+P1M2 dz dx +P1N2 dz dy +P1P2 dz dz

The diagonal terms cancel. For the off-diagonal terms, we reorder the differentials to match
U dy dz + V dz dx+W dx dy: our model for a 2-form. We get

(N1P2 − P1N2) dy dz + (P1M2 −M1P2) dz dx+ (M1N2 −N1M2) dx dy.

What is this? This is the cross product of the vectors (M1, N1, P1) and (M2, N2, P2). So that’s
our first observation: the exterior product of two 1-forms is their cross product, as a
2-form.

What happens if we multiply a 1-form M dx+N dy+P dz by a 2-form U dy dz+V dz dx+W dx dy?
Before simplifying anything, we’ll get another 9-term product:

MU dx dy dz +MV dx dz dx +MW dx dx dy
+NU dy dy dz +NV dy dz dx +NW dy dx dy
+PU dz dy dz +PV dz dy dz +PW dz dx dy

In this 9-term product, every off-diagonal term contains a repeated variable, so it simplifies to 0.
The first term, MU dx dy dz, is already written like our model 3-form. To combine the middle term
with it, we rewrite NV dy dz dx first as −NV dy dx dz and then as NV dx dy dz. (Every time we
swap two differential elements, the sign changes, but we do two swaps.) For the last term, we get
PW dz dx dy = −PW dx dz dy = PW dx dy dz. The final answer is

(MU +NV + PW ) dx dy dz.

In other words: the exterior product of a 1-form with a 2-form is their dot product, as
a 3-form.

3 The exterior derivative

It’s kind of nice that we get cross products and dot products as special cases of the same opera-
tion. But one of the biggest advantages of working with differential forms is that we get a single
operation—the exterior derivative—that generalizes gradient, curl, and divergence.

This operation is called the exterior derivative. It turns 0-forms into 1-forms, 1-forms into 2-forms,
and 2-forms into 3-forms. Here is how it is defined:

• The exterior derivative of a 0-form f is

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

We will use this to define all the other exterior derivatives.
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• The exterior derivative of a 1-form is

d(M dx+N dy + P dz) = (dM) dx+ (dN) dy + (dP ) dz

where dM , dN , and dP are defined by the rule for 0-forms. This expression has some exterior
products in it, and we’ll use the rules for those to simplify it.

• The exterior derivative of a 2-form is

d(U dy dz + V dz dx+W dx dy) = (dU) dy dz + (dV ) dz dx+ (dW ) dx dy

where dU , dV , and dW are defined by the rule for 0-forms. Once again, this expression has
some exterior products in it, and we’ll use the rules for those to simplify it.

In general, the idea is that when we take the exterior derivative of a 0-form multiplied by some
differential elements, we first take the exterior derivative of the 0-form, and then multiply the
differential elements on at the end.

The definition of df also lets us change coordinates, and work with differential forms in a different
basis. For example, we could work with differential forms in cylindrical coordinates, written in
terms of dr, dz, and dθ. We will not do this very much, but some results of that are interesting:
for example, dθ, when written in rectangular coordinates, is

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy

which is a vector field with a singularity along the z-axis that we’ve used as a counterexample
several times in this class.

Our definition

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

makes the exterior derivative look a lot like the gradient—and it is the gradient, when applied
to 0-forms. (The gradient ∇f is a vector field, and the 1-form df can be interpreted as a vector
field.)

Meanwhile, if we take the exterior derivative of a 1-form, we get its curl—as a 2-form. The
calculation here, again, involves a 9-term exterior product with lots of cancellation. So let’s just
do an example: what is the exterior derivative of z3 dx+ (x− z3) dy?

• The z3 dx term turns into ( ∂
∂xz

3 dx+ ∂
∂yz

3 dy + ∂
∂z z

3 dz) dx, or 3z2 dz dx.

• The (x − z3) dy term turns into ( ∂
∂x(x − z3) dx + ∂

∂y (x − z3) dy + ∂
∂z (x − z3) dz) dy, which

simplifies to (dx− 3z2 dz) dy or 3z2 dy dz + dx dy.

Altogether, we get 3z2 dy dz + 3z2 dz dx + dx dy. This should look familiar: for homework, you
computed the curl of F = z3 i+ (x− z3) j to be 3z2 i+ 3z2 j+ k.

The exterior derivative of a 2-form gives a 3-form, and it is also a familiar operation: the diver-
gence.

There are two facts we have learned relating the gradient, curl, and divergence (with no differential
forms involved):
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• The curl of a gradient field is 0. (We previously called this the component test.)

• The divergence of a curl field is 0.

In the language of differential forms, this says: for any differential form ω, d(dω) = 0. Applying the
exterior derivative twice always cancels out to 0. Essentially, this happens because mixed partial
derivatives end up canceling.

4 Integrating a differential form

If we have a k-form in n variables, we can integrate it over an oriented k-dimensional subset of Rn.
For our purposes it means that we can:

• Integrate a 1-form M dx+N dy + P dz over an oriented curve in R3.

• Integrate a 2-form U dy dz + V dz dx+W dx dy over an oriented surface in R3.

• Integrate a 3-form g dx dy dz over an oriented solid region in R3.

Here, too, I think that using differential forms demonstrates that the various integrals we’ve done
this semester, which have often seemed somewhat arbitrary, are actually the correct integrals to
consider! Circulation and flux integrals all spontaneously appear when we figure out what exactly
integrating a differential form should mean.

Let’s begin with the integral over a curve.

Compared to the other uses of differential forms, the integral∫
C
M dx+N dy + P dz

is a much more familiar object. Your textbook even uses it as notation for some line integrals.

The most flexible approach to taking this integral is to parameterize the curve C: a function r(t)
such that as t goes from a to b, the point r(t) traces out the curve C. We have already discussed
such line integrals in this class. The only caveat: for this material, it is convenient to think of the
curve C itself as having an orientation. The parameterization r must be chosen to be consistent
with that orientation.

We think of r as giving a different coordinate system: a 1-dimensional coordinate system that can
only be used for points on the curve C. In that 1-dimensional coordinate system, all differential
forms can be expressed in terms of the differential element dt. Our native-to-R3 differential elements
dx, dy and dz must be expressed in terms of dt: as dx

dt dt,
dy
dt dt, and

dz
dt dt, respectively. What are

dx
dt ,

dy
dt , and

dz
dt ? They are components of the derivative dr

dt .

So we rewrite the integral as ∫ b

a
M

dx

dt
dt+N

dy

dt
dt+ P

dz

dt
dt,

turning it into a normal 1-variable integral with respect to t. Importantly, M , N , and P should
all be turned into functions of t, by evaluating them at r(t). The quantity M dx

dt + N dy
dt + P dz

dt is
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what we’re used to writing as F · drdt . We get back the ordinary line integral of a vector field around
a curve!

The main difficulty with the integral of a 1-form is not misinterpreting the notation. It is very
tempting to look at an integral like ∫

C
x3yz dx

and think of taking an antiderivative of x3yz with respect to x, getting some expression like 1
4x

4yz
to be evaluated. . . somewhere. It’s often not clear where to evaluate it, but more importantly,
getting to 1

4x
4yz is often a mistake to begin with: it assumes that y and z are constants with

respect to x, and usually they are not! In special cases, where C is a line segment aligned in one
cardinal direction, we can get somewhere with this approach. Unless you are in that case and very
certain you know what you are doing, don’t attempt it.

Now let’s talk about surface integrals of 2-forms: the integral∫∫
S
U dy dz + V dz dx+W dx dy

where S is an oriented surface.

Here, we will also want to choose a parameterization: a function r(u, v) such that as u and v vary
over some domain D, the point r(u, v) traces out the surface S. Once again, the surface S already
has an orientation, and r must be chosen to be consistent with that orientation.

The parameterization gives a 2-dimensional coordinate system for points on the surface S, and so
the differential elements dx, dy, and dz must be expressed in terms of the differential elements du
and dv in this 2-dimensional coordinate system. This is done by writing

dx =
∂x

∂u
du+

∂x

∂v
dv, dy =

∂y

∂u
du+

∂y

∂v
dv, dz =

∂z

∂u
du+

∂z

∂v
dv.

The partial derivatives such as ∂x
∂u ,

∂x
∂v , . . . are the appropriate components of the partial derivatives

∂r
∂u and ∂r

∂v .

But our differential form is a 2-form, with expressions such as dx dy in it, which must be simplified
by the exterior product. We have

dx dy =

(
∂x

∂u
du+

∂x

∂v
dv

)(
∂y

∂u
du+

∂y

∂v
dv

)
=

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
dudv.

In non-differential terms, we can recognize this as the k-component of ∂r
∂u × ∂r

∂v . Expanding out
dy dz and dz dx in the same way gives the i- and j-components. We end up rewriting our integrand
as ∫∫

D
U

(
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

)
du dv + V

(
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

)
dudv +W

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
dudv

and this is exactly the expression F · ( ∂r∂u × ∂r
∂v ) that we usually see in our surface integrals!1

1Without using the exterior product, there is a less fancy way to turn U dy dz into U
(
∂y
∂u

∂z
∂v

− ∂y
∂v

∂z
∂u

)
dudv: the

factor we see there is also the Jacobian determinant J(u, v). This makes sense: what we’re doing here is really a
uv-substitution. We do not take the absolute value of the Jacobian, because we care about the orientation of our
surface.
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Finally, we can integrate a 3-form: ∫∫∫
R
g dx dy dz

where R is a solid region in R3. In this case, we don’t have to choose a parameterization to make
sense of this integral; this is just the ordinary triple integral over R!

However, we could choose a parameterization of R; a function r(u, v, w) from R3 to R3. (We usually
call this a “transformation” or “change of coordinates”). If we write dx = ∂x

∂u du+ ∂x
∂v dv +

∂x
∂w dw,

do the same thing for dy and dv, and then expand out the exterior product dx dy dz, what will we
get? We’ll get dudv dw with a factor in front: a factor we are already familiar with as the Jacobian
determinant of the transformation r.

The fact the regions we integrate over are all oriented is important here: it means that to get the
correct sign on our integral, the transformation r must be orientation-preserving. (If applied to
an asymmetric shape in uvw-space, it must produce some possibly-distorted copy of that shape in
xyz-space, as opposed to a distorted mirror image of that shape.)

This is easily addressed. If r is not orientation-preserving, the Jacobian determinant will be nega-
tive. To fix this, we make sure to take the absolute value of the Jacobian determinant.

5 The generalized Stokes’ theorem

All this enables us to state a theorem known as the generalized Stokes’ theorem. It has a very
simple statement:

Let M be a d-dimensional oriented manifold2 in Rn with boundary ∂M ; we choose the orientation
of ∂M to be consistent with the orientation of M . Let ω be a (d− 1)-form. Then∫

M
dω =

∫
∂M

ω.

To make sense of this very short statement, we need to put together everything on the previous
six-and-a-half pages. We must remember that in R3, the exterior derivative dω will be gradient,
or curl, or divergence. Then we must properly integrate the differential forms on both sides: for
1-forms, we’ll get a flow or circulation integral over a curve, and for 2-forms, we’ll get a flux integral
across a surface.

If we do this, then what comes out of the theorem will be the appropriate version of one of the
other integral theorems we’ve learned this semester:

• When M is a solid region in R3 and ω is a 2-form, we get the divergence theorem.

• When M is a surface in R3 and ω is a 1-form, we get Stokes’ theorem.

• When M is a solid region in R2 and ω is a 1-form, we get Green’s theorem.3

We can even generalize to curves, surfaces, and so forth in higher dimensions!

2For our purposes, a manifold is a curve, surface, or solid region in R3.
3Green’s theorem has two forms: a tangent form and a normal form. But that’s just a matter of interpreting the

integrals: the actual equality between integrals is the same either way.
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6 An example

Let’s work through using the generalized Stokes’ theorem on a specific example.

• Let M be the portion of the cone given by z2 = x2+y2 with 0 ≤ z ≤ 1. We can parameterize
this cone by r(u, v) = (u cos v, u sin v, u) where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π. (The orientation
induced by this choice of r has a normal vector pointing upward and inward.)

• With this choice of M , the boundary ∂M is the circle x2 + y2 = 1 in the plane z = 1. We
can parameterize this circle by r(t) = (cos t, sin t, 1) where 0 ≤ t ≤ 2π (with counterclockwise
orientation, which is consistent with our orientation of M).

• Let’s look at the vector field F = z3 i + (x − z3) j, which corresponds to the 1-form ω =
z3 dx+ (x− z3) dy.

First of all, let’s integrate ω over the boundary ∂M . This should correspond to a counterclockwise
circulation integral of F.

To integrate z3 dx + (x − z3) dy, we switch to t-coordinates from xyz-coordinates. Three things
change:

• Rather than integrating over the circle ∂M in xyz-space, we integrate over the region [0, 2π]
in t-space. That’s just an ordinary single-variable integral with respect to t.

• Using r(t) = (cos t, sin t, 1), we replace x by cos t, y by sin t, and z by 1.

• Using ∂r
∂t = (− sin t, cos t, 1), we replace dx by − sin tdt, dy by cos t dt, and dz by 0.

This gives us ∫
∂M

z3 dx+ (x− z3) dy =

∫ 2π

0
13(− sin t dt) + (cos t− 13)(cos t dt)

=

∫ 2π

0
(cos2 t− sin t− cos t) dt.

This is in fact the circulation integral of F = z3 i + (x − z3) j around ∂M . If we write down
F(r(t)) · ∂r

∂t dt, we get exactly the same integrand.

Now let’s look at the other half of the theorem: the integral of dω over M . We know what the
non-generalized Stokes’ theorem says, so we expect a flux integral of the curl of F to come out of
this.

First, we compute dω; this is done earlier in the notes, where we got dω = 3z2 dy dz + 3z2 dz dx+
dx dy. So how do we find ∫

M
3z2 dy dz + 3z2 dz dx+ dx dy?

Once again, we want to integrate in uv-coordinates, but everything in this integral is in xyz-
coordinates. So we do a coordinate change, which has the following effects:

• An integral over M in xyz-space becomes an integral over [0, 1]× [0, 2π] in uv-space.

• According to the parameterization, we have x = u cos v, y = u sin v, and z = u.
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• Taking the derivative, we get dx = cos v du−u sin v dv, dy = sin v du+u cos v dv, and dz = du.

• The new thing compared to the line integral is that we want to take exterior products of these
to understand terms like dy dz. We get

dy dz = (sin v du+ u cos v dv)(du)

= −u cos v dudv,

dz dx = (du)(cos v du− u sin v dv)

= −u sin v dudv,

dx dy = (cos v du− u sin v dv)(sin v du+ u cos v dv)

= u cos2 v dudv − u sin2 v dv du

= ududv.

Note that the expressions for dy dz, dz dx, and dx dy are exactly the components of the cross
product ∂r

∂u × ∂r
∂v , multiplied by dudv. When we include the components of dω, we really do get

the flux integral of the curl of F.

After making all of these substitutions, we get∫
M

dω =

∫
M

3z2 dy dz + 3z2 dz dx+ dx dy

=

∫ 2π

0

∫ 1

0
3u2(−u cos v dudv) + (3u2)(−u sin v dudv) + (u dudv)

=

∫ 2π

0

∫ 1

0
(u− 3u3 cos v − 3u3 sin v) du dv.

At this point, we have ended up at an ordinary iterated integral. (If we evaluate both integrals, we
get π for both of them.)
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