Discrete Math Homework 4

Mikhail Lavrov

due Friday, March 3, 2023

1 Short answer

1. (a) Write the statement "Some integers n are divisible by 12 , but not divisible by 18 " using quantifiers (and the definition of divisibility).
(b) The statement " $\forall n \in \mathbb{Z},((\exists k \in \mathbb{Z}, n=12 k) \Longrightarrow(\exists k \in \mathbb{Z}, n=4 k)$ ") is a claim about a property of divisibility. Write it in words.
2. Suppose we want to prove the claim "For all positive integers n, if n is even, then $2^{n}-1$ is divisible by 3 ."

Classify each of the following as the beginning of a direct proof, proof by contrapositive, proof by contradiction, or a mistake.
(a) Let n be a positive integer. Suppose that n is even; we want to show that $2^{n}-1$ is divisible by 3 .
(b) Let n be a positive integer. Suppose that $2^{n}-1$ is divisible by 3 ; we want to show that n is even.
(c) Let n be a positive integer. Suppose that $2^{n}-1$ is not divisible by 3 ; we want to show that n is odd.
(d) Let n be a positive integer. Suppose that n is even, but $2^{n}-1$ is not divisible by 3 .
3. Let S be the set $\{4,5,6,7,8,9\}$ and let R be the relation from S to S defined as follows: $(x, y) \in R$ if there is some integer $d>1$ such that both x and y are divisible by d.
(For example, $(4,6) \in R$, because 4 and 6 are both divisible by 2 .)
(a) Describe R by a set of ordered pairs.
(b) Draw an arrow diagram for R.
(c) Find an example of $x, y, z \in S$ such that $x R y$ and $y R z$ are both true, but $x R z$ is false.

2 Proofs

4. You have already written a rough draft of this problem; now, read my feedback and write a final draft.

Prove that for any two odd positive integers r and $s, 3 r-5 s$ is even.
5. For this problem, write a rough draft of a proof; any reasonable attempt will be given full credit. I will give you feedback, and you will write a final draft on the next homework assignment.

Prove that for any two integers x and y, if x is divisible by 3 and $x y$ is not divisible by 6 , then y is odd.

