Discrete Math Homework 5

Mikhail Lavrov

due Friday, March 17, 2023

1 Short answer

1. Here is an arrow diagram for a function f from $\{a, b, c, d\}$ to $\{1,2,3,4\}$.

(a) Write the following three sets: the domain of f, the co-domain of f, and the range of f.
(b) For each element of the co-domain, find its inverse image (a subset of the domain).
(c) The function f is neither injective (one-to-one) nor surjective (onto). For each of these properties, say how f violates it.
(d) Represent f as a set of ordered pairs.
2. Find the following quantities (to get practice with functions and relations at the same time as reviewing counting techniques):
(a) The number of injective (one-to-one) functions from $\{1,2,3\}$ to the power set $\mathcal{P}(\{1,2,3\})$.
(b) The number of surjective (onto) functions from $\{0,1\}^{3}$ to $\{0,1\}$.
(c) The number of reflexive relations on the set $\{a, b, c, d\}$.
3. The diagram below shows five points A, B, C, D, E and four lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$, each of which passes through some of the five points:

Let Q be the "incidence relation" from points to lines, defined as follows: for a point p and a line ℓ,

$$
p Q \ell \Longleftrightarrow \ell \text { passes through } p
$$

(a) Draw an arrow diagram for Q.
(b) Describe the inverse relation Q^{-1} as a set of ordered pairs.
4. Let R be the relation defined on the set $\{0,1,2,3,4,5,6,7,8,9\}$ by the rule that $x R y$ if and only if $x+y$ is divisible by 3 . (For example, $1 R 5$, because $1+5=6$, which is a multiple of 3.)
(a) Is R reflexive? (If not, give a counterexample.)
(b) Is R symmetric? (If not, give a counterexample.)
(c) Is R transitive? (If not, give a counterexample.)

2 Proofs

5. You have already written a rough draft of this problem; now, read my feedback and write a final draft.

Prove that for any two integers x and y, if x is divisible by 3 and $x y$ is not divisible by 6 , then y is odd.
6. For this problem, write a rough draft of a proof; any reasonable attempt will be given full credit. I will give you feedback, and you will write a final draft on the next homework assignment.

Define a function f from the positive integers $\mathbb{Z}^{+}=\{1,2,3,4,5, \ldots\}$ to the integers $\mathbb{Z}=$ $\{\ldots,-2,-1,0,1,2, \ldots\}$ by the following rule:

- If $n \in \mathbb{Z}^{+}$is odd, let $f(n)=\frac{n-1}{2}$.
- If $n \in \mathbb{Z}^{+}$is even, let $f(n)=-\frac{n}{2}$.

Prove that f is injective (one-to-one).

