Discrete Math Homework 6

Mikhail Lavrov

due Friday, March 31, 2023

1 Short answer

1. Divide a pentagon into 5 equal slices. Let A be the set of all $2^{5}=32$ ways to draw the polygon with some subset of the slices shaded (including all or none of them). A few elements of A are shown below:

Let R be the relation on A defined as follows: $x R y$ if x can be rotated to turn it into y. This is an equivalence relation.
(a) If x_{1}, x_{2}, and x_{3} are the three elements of A drawn above, list the elements of the equivalence classes $\left[x_{1}\right],\left[x_{2}\right]$, and $\left[x_{3}\right]$.
(b) Find the total number of equivalence classes A has. (No combinatorial formula is necessary; you should be able to do this by counting.)
2. Evaluate the following expressions:
(a) $\sum_{j=-1}^{1} \frac{j^{2}-j+1}{j^{2}+j+1}$.
(b) $\sum_{k=1}^{10} a_{k}$ where $a_{k}=\left\{\begin{array}{ll}1 & \text { if } k \text { is even, } \\ 0 & \text { if } k \text { is odd. }\end{array}\right.$.
(c) $\prod_{i=1}^{5} \frac{i}{i+3}$.
(d) $\sum_{n=4}^{9} \sqrt{n}$ (simplify as much as possible).
3. Define a sequence $x_{1}, x_{2}, x_{3}, \ldots$ by the rule that $x_{1}=1$ and, for all $n \geq 1, x_{n+1}=2 n-x_{n}+1$.
(a) Compute the first 6 terms of the sequence.
(b) Guess a formula for x_{n} in terms of n.

2 Proofs

4. You have already written a rough draft of this problem; now, read my feedback and write a final draft.
Define a function f from the positive integers $\mathbb{Z}^{+}=\{1,2,3,4,5, \ldots\}$ to the integers $\mathbb{Z}=$ $\{\ldots,-2,-1,0,1,2, \ldots\}$ by the following rule:

- If $n \in \mathbb{Z}^{+}$is odd, let $f(n)=\frac{n-1}{2}$.
- If $n \in \mathbb{Z}^{+}$is even, let $f(n)=-\frac{n}{2}$.

Prove that f is injective (one-to-one).
5. For this problem, write a rough draft of a proof; any reasonable attempt will be given full credit. I will give you feedback, and you will write a final draft on the next homework assignment.

Let $a_{1}, a_{2}, a_{3}, \ldots$ satisfy the property that $a_{n}=\frac{a_{n-1}+a_{n+1}}{2}$ for all integers $n \geq 2$.
Prove that if $a_{1}=a_{2}$, then the sequence is constant (all terms of the sequence are equal).

