Discrete Math Homework 7

Mikhail Lavrov

due Friday, April 14, 2023

1 Short answer

1. Let G be the graph below:

(a) List the degrees $\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right), \ldots, \operatorname{deg}\left(v_{8}\right)$ in this graph.
(b) Use your answer to (a) to find the number of edges in G without counting.
2. Let G be the graph which has six vertices $\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, b_{4}\right\}$ and all 8 edges of the form $a_{i} b_{j}$.
(a) Draw a diagram of G.
(b) Label all vertices in the diagram with their degree.
(c) Verify the handshake lemma for G.
3. Let G be the graph below:

(Note: I haven't labeled the edges in this graph; every answer in this problem should just be given as a sequence of vertices.)
(a) Find a path from s to t of the shortest length possible. (Briefly explain why the path cannot be shorter.)
(b) Find a path from s to t that is as long as possible. You don't have to explain why the path cannot be longer.
(A path cannot repeat vertices or edges.)
(c) Find a trail from s to t of length 8. (A trail can repeat vertices, but not edges.)

2 Proofs

4. You have already written a rough draft of this problem; now, read my feedback and write a final draft.

Let $a_{1}, a_{2}, a_{3}, \ldots$ satisfy the property that $a_{n}=\frac{a_{n-1}+a_{n+1}}{2}$ for all integers $n \geq 2$.
Prove that if $a_{1}=a_{2}$, then the sequence is constant (all terms of the sequence are equal).
5. For this problem, write a rough draft of a proof; any reasonable attempt will be given full credit. I will give you feedback, and you will write a final draft on the next homework assignment.

Prove by induction on n that for all $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}}
$$

