Discrete Math Homework 8

Mikhail Lavrov

due Friday, April 28, 2023

1 Short answer

1. (a) Determine whether the two graphs below are isomorphic. If they are, give an isomorphism; if not, explain why not.

(b) Determine whether the two graphs below are isomorphic. If they are, give an isomorphism; if not, explain why not.

(c) Determine whether the two graphs below are isomorphic. If they are, give an isomorphism; if not, explain why not.

2. Draw lines from the regular expressions in the first row to the strings they match in the second row. A regular expression can match more than one string.

$$
\begin{array}{|l|l|}
\hline 2(0 \mid 1)^{*} & (0|10| 20)^{*} \\
\hline 2^{*} 0^{*} 1^{*} 2^{*} & \left.\left.\begin{array}{|c|}
\hline
\end{array} 0 \right\rvert\, 1\right)^{*} \mid(1 \mid 2)^{*} \\
\hline
\end{array}
$$

22122
λ
20010010
10200
3. Consider the finite-state automaton in the diagram below:

(a) The language that this automaton accepts is exactly the language matched by one of the regular expressions in question 2 . Which one?
(b) Briefly explain the purpose of each of the states a, b, and c; what is the automaton "doing" in each of those states?
(c) Suppose that we change the automaton so that state c is accepting, but state b is not. How would the language accepted by the automaton change? You may explain in words, or by giving a regular expression.

2 Proofs

4. You have already written a rough draft of this problem; now, read my feedback and write a final draft.

Prove by induction on n that for all $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}}
$$

5. (a) Let G be an arbitrary graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$. Suppose we know that exactly k vertices have degree 1 , all other vertices have degree at least 2 , and at least one vertex has degree 10 .

What is the minimum possible value of the sum

$$
\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\cdots+\operatorname{deg}\left(v_{n}\right) ?
$$

(b) Forgetting part (a) for the moment, let G be a tree with vertices $v_{1}, v_{2}, \ldots, v_{n}$. What must the sum

$$
\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\cdots+\operatorname{deg}\left(v_{n}\right)
$$

be equal to?
(c) (Bonus problem!)

Use parts (a) and (b) to write a proof that if a tree has a vertex of degree 10, then it has at least 10 leaves.

