

SYLLABUS

KENNESAW STATE UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING

EE 4490: Special Topics: Fiber Optic Communications - Fall 2025

Course Information

Class meeting time: Tu/Th 9:30am-10:20am

Lecture Modality and Location: Face to Face; Atrium Building-Room 1222

Lab Modality and Location: Face to Face; ETC Q-246

Syllabus is posted in D2L

Instructor Information

Omar Rawdah, Instructor

E-mail:

Office Phone:
Office Hours: TBA
Office Location:

Preferred method of communication: Email

Course Description

3 Credit Hours- 2 Class Hours 1 Laboratory Hours

Prerequisites: EE 2401 Semiconductor Devices and EE 3605 Electromagnetics.

Course Materials

Required Text: Understanding Fiber Optics, by Jeff Hecht, 5th edition, SPIE Press

Book, 2015.

ISBN: 1511445653

ISBN13: 9781511445658

Recommended Text: Optical WDM Networks, Biswanath Mukherjee, 2nd edition,

Springer, 2006.

ISBN: 978-1-4899-7883-7

Some students learning material to be provided from personal notes.

Course Outline

- Fiber optics fundamentals, types, and how they are assembled into cables.
- Optical fibers, their properties (propagation, dispersion, attenuation, nonlinearity).
- Laser and LED sources, optical transmitters, detectors, receivers, and amplifiers.
- Fiber optic components: connectors, splicers, couplers, and passive components.
- WDM optics, optical switches, modulators and active components.
- Optical measurement techniques, and test equipment.
- Fiber Optic networks and systems, designing optical systems, and link budgets.
- Applications: Metro and access networks, LANs, Passive Optical Networks, and Free-Space-Optics.

Labs Outline:

- Fiber and Connector Preparation
- Insertion Loss Testing
- Splicing
- OTDR Trace analysis
- Loss Budget Measurements

Learning Outcomes

After successful completion of this course, the students will be able to:

- 1. Comprehend the fundamentals of optical fibers used for communications.
- 2. Learn the functionality of the components of a fiber-optic communication system.
- 3. Describe the properties of optical fiber and performance of a communication link.
- 4. Recognize and describe Laser and LED sources, optical transmitters, detectors, receivers, optical amplifiers, and repeaters.
- 5. Identify and describe fiber optic passive and active components, including: connectors, splicers, couplers, splitters, WDM optics.
- 6. Use optical fiber test equipment and understand optical measurement techniques.
- 7. Perform simple measurements of fiber, compare multi-mode and single-mode fiber, and splice optical fibers.
- 8. Measure properties of components used in WDM optical systems
- 9. Design an optical communication link and analyze its main parameters.
- 10. Differentiate between fixed optical communications networks (passive and active) and describe the role of fiber in wireless communication networks.
- 11. Successfully design a fiber-to-the-home network (OSP / ISP).