12 Kinematics of a Particle

Rectilinear Kinematics

12 - 1.	A car is traveling at a speed of 8 m/s when the brakes are suddenly applied, causing a constant deceleration
1 m/s^2 .	Determine the time required to stop the car and the distance traveled before stopping.

Solution

Since the deceleration is constant, determine the time t using

$$(^+_{\rightarrow}) \; v = v_0 + a_c t$$

$$t = 8 \text{ s}$$

Ans.

Determine the distance traveled using

$$\binom{+}{-} v^2 = v_0^2 + 2a_c(s - s_0)$$

$$s = 32 \text{ m}$$

Ans.

Also, using the time t computed above the following equation can be used to determine the distance.

$$(^+_{\to})s = s_0 + v_0 t + \frac{1}{2}a_c t^2$$

$$s = 32 \text{ m}$$

Ans.