
Putnam practice - Number theory problem solutions

1. True or false: If p ≥ 5 is a prime number, then 24 divides p2 − 1 without remainder.

True.

First note that p2 − 1 can be factored as (p− 1)(p + 1).

Observe that one of any three consecutive integers p− 1, p, p+ 1 must be divisible by 3. However, since
p ≥ 5 is a prime, p cannot be divisible by 3. Hence, 3 divides one of p− 1 or p + 1, and their product.

Next, observe that one of any four consecutive integers p − 1, p, p + 1, p + 2 must be divisible by 4.
However, since p ≥ 5 is prime, p cannot be even and, hence, p + 2 cannot be even.

Therefore, 4 divides one of p−1 or p+1. Then the remaining one is also an even number and is divisible
by 2. Hence, 4 · 2 = 8 divides (p− 1)(p + 1).

Combining everything together, we have 3 · 8 = 24 divides (p− 1)(p + 1) = p2 − 1.

2. Show that there are no integers a, b, and c such that a2 + b2 − 8c = 6.

The equation is the same as a2 + b2 = 8c + 6.

Now, we try to study perfect squares x2 (mod 8).

By division algorithm, any integer x has remainder 0, 1, 2, 3, 4, 5, 6 or 7 when divided by 8. (i.e., x ≡
0, 1, 2, 3, 4, 5, 6, 7 (mod 8).)

One can verify that x2 ≡ 02, 12, 22, 32, 42, 52, 62, 72 ≡ 0, 1, 4, 1, 0, 1, 4, 1 (mod 8).

So, any perfect square x2 ≡ 0, 1 or 4 (mod 8).

Consequently, a2 + b2 ≡ 0 + 0, 0 + 1, 0 + 4, 1 + 0, 1 + 1, 1 + 4, 4 + 0, 4 + 1 or 4 + 4 (mod 8) but none of
these is ≡ 6 (mod 8).

Therefore, there is no integer solution to a2 + b2 = 8c + 6.

3. (2003 A1) Let n be a fixed positive integer. How many ways are there to write n as a sum of positive
integers n = a1 + a2 + · · ·+ ak with k positive and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1?

One can inspect small cases first and see a pattern.

1 = 1. There is only 1 way.

2 = 2 or 2 = 1 + 1. There are 2 ways.

3 = 3, 3 = 1 + 2, or 3 = 1 + 1 + 1. There are 3 ways.

In general, one suspects that there are n ways to write n in the required form.

As ai ≥ 1, we have n = a1 + a2 + · · ·+ ak ≥ 1 + 1 + · · ·+ 1 = k ≥ 1.

Claim: For each length 1 ≤ k ≤ n, there is one and only one way to write n = a1 + a2 + · · · ak with
a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1.

Proof:

Since a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1, a certain number of the ai’s are a1 while the rest (which could be
none) are a1 + 1.



Suppose a1 = a2 = · · · = as and as+1 = · · · = ak = a1 + 1 for some 1 ≤ s ≤ k. (When s = k, then none
of the ai’s equal to a1 + 1.)

Then n = sa1 + (k − s)(a1 + 1) = ka1 + (k − s). Note that 0 ≤ k − s < k.

For each length 1 ≤ k ≤ n of the sum n = a1 +a2 + · · ·+ak, we know that n = k · q+ r for some unique
quotient q and remainder 0 ≤ r < k by division algorithm.

Hence, we can represent n as n = q + q + · · ·+ q︸ ︷︷ ︸
s times

+ (q + 1) + · · ·+ (q + 1)︸ ︷︷ ︸
k−s times

. (i.e., there is at least one

way to do it.)

Moreover, by the uniqueness of division algorithm, the equation n = ka1 + (k − s) = kq + r has only
one solution for a1 and k − s (i.e., s) for each fixed k.

Therefore, the claim is true and there are exactly n ways to do it.

4. (2014 A1) Prove that every non-zero coefficient of the Taylor series of (1− x + x2)ex about x = 0 is
a rational number whose numerator (in lowest terms) is either 1 or a prime number.
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after re-indexing and some algebra. Clearly, the constant term has numerator 1.

Case 1: If n− 1 is a prime number, then the coefficient n−1
n·(n−2)! is in lowest term already as n− 1 is not

divisible by n − 2, n − 3, . . . , 2; and gcd(n − 1, n) = 1 since any common divisor of n − 1 and n must
divide their difference which is 1. In this case, the numerator n− 1 is a prime number.

Case 2: If n− 1 is a composite number, then n− 1 = a · b for some 1 < a, b < n− 1.

Subcase 1: If a 6= b, say 1 < a < b < n − 1. Then both a and b appears somewhere in (n − 2)! =
(n − 2) · · · b · · · a · · · 1. So, the coefficient n−1

n·(n−2)! = ab
n·(n−2)···b···a···1 can be reduced to 1

n···· which has
numerator 1.

Subcase 2: If a = b, then n− 1 = a2. Then the coefficient n−1
n·(n−2)! = a2

n·(n−2)···2a···a···1 can be reduced to
1

n···· which has numerator 1 if 2a ≤ n− 2 = a2 − 1.

We know that (a− 1)2 ≥ 22 ≥ 2 when a ≥ 3. Hence, a2 − 2a + 1 ≥ 2 which implies a2 − 1 ≥ 2a. Thus,
subcase 2 above is okay when a ≥ 3.

It remains to deal with the special case when a = 2. Then n − 1 = 22 gives n = 5. The coefficient for
x5 is 5−1

5·(5−2)! = 4
5·3·2·1 = 2

15 whose numerator 2 is a prime number. And we are okay in this situation as
well.

5. (2005 A1) Show that every positive integer is a sum of one or more numbers of the form 2r3s where
r and s are non-negative integers and no summand divides another.



For any positive even integer n, we can factor out the highest power of 2 that goes into it, say 2k. Then
n
2k

= m is a positive odd integer.

Now, if we can represent m as a sum of one or more numbers of the form 2r3s where r and s are
non-negative integers and no summand divides another, then we can represent n as a sum of one or
more numbers of the form 2r+k3s where r and s are non-negative integers and no summand divides
another.

Therefore, we can focus on positive odd integers only and we will prove the statement by strong induc-
tion.

Base step: n = 1. Clearly, we can write 1 = 2030.

Induction step: Suppose the statement is true for n = 1, 3, 5, · · · 2a− 1 for some integer a ≥ 1.

Then we want to prove that the statement is true for n = 1, 3, 5, · · · 2a− 1, 2(a + 1)− 1 = 2a + 1.

By induction hypothesis, the statement is true for n = 1, 3, 5, · · · 2a− 1.

It remains to show that the statement is true for n = 2a + 1.

Subtract the highest power of 3 that is less than or equal to 2a + 1, we get m = 2a + 1− 3l.

Note that 3l ≤ 2a + 1 < 3l+1 and, hence, m = 2a + 1− 3l < 3l+1 − 3l = 3 · 3l − 3l = 2 · 3l.

If m = 0, then we are done as 2a + 1 = 3l = 203l.

If m > 0, then 2a + 1− 3l is a positive even integer as 2a + 1 and 3l are odd integers.

Hence, by factoring out the highest power of 2 in it, we have 2a+1−3l
2k

= b is a positive odd integer.

Clearly, b < 2a+1−3
2 = a− 1 < 2a− 1.

By induction hypothesis, we can write b as a sum of one or more numbers of the form 2r3s where r and
s are non-negative integers and no summand divides another.

Hence, we can write m = 2a + 1− 3l as a sum of one or more numbers of the form 2r+k3s where r and
s are non-negative integers and no summand divides another.

As m < 2 · 3l, all the exponents s in 3s must be less that l for otherwise 2r+k3s ≥ 213l > m.

Since all the s’s are less than l, none of the summand 2r+k3s is divisible by 3l.

Also, since each of the summand 2r+k3s has a factor of 2 in it, none of them cannot divide 3l.

Therefore, 2a + 1 = 3l +
∑

2r+k3s is a sum of the required form with no summand dividing another.
This finishes the induction step.

6. (2024 A1) Determine all positive integers n for which there exist positive integers a, b, c such that
2an + 3bn = 4cn.

Answer: n = 1.

I will let you spot some positive integer solutions for 2a1 + 3b1 = 4c1.

We will prove that 2an + 3bn = 4cn has no positive integer solution when n ≥ 2.

When n = 2, the equation becomes 2a2 + 3b2 = 4c2. Suppose a, b, c is a solution with c smallest.

One can check that x2 ≡ 0, 1 (mod 3). Hence, the above equation leads to 2a2 ≡ 4c2 ≡ c2 (mod 3).



For this to be true, we cannot have a2 ≡ 1 (mod 3) as 2 · 1 ≡ c2 (mod 3) is impossible.

Therefore, we must have a2 ≡ 0 (mod 3) which implies a ≡ 0 (mod 3).

Then, this implies 2 · 0 ≡ c2 (mod 3). Hence c ≡ 0 (mod 3).

Thus, a = 3a′ and c = 3c′ for some positive integers a′, c′.

Then 2(3a′)2 + 3b2 = 4(3c′)2. This implies 18a′2 + 3b2 = 36c′2 or b2 = 12c′2 − 6a′2 = 3(4c′2 − 2a′2).

In particular 3 divides b2 which implies 3 divides b. Thus, b = 3b′ for some positive integer b′.

But then, we have 2(3a′)2 + 3(3b′)2 = 4(3c′)2.

This gives 2a′2 + 3b′2 = 4c′2 yielding a solution a′, b′, c′ with a smaller c′.

This contradicts the minimality of c. Hence, there cannot be any positive integer solution to 2a2+3b2 =
4c2.

When n ≥ 3, we will do a similar but with (mod 2) instead of (mod 3).

Suppose 2an + 3bn = 4cn has some positive integer solution a, b, c with c being smallest.

Then 3bn = 4cn − 2an.

Since the right-hand side is even, the left-hand side is also even.

Hence, we must have b is even. Say b = 2b′ for some positive integer b′.

Then the equation becomes 2an + 3 · 2nb′n = 4cn or an = 2cn − 3 · 2n−1b′n.

Since the right-hand side is even, the left-hand side is also even.

Hence, we must have a is even. Say a = 2a′ for some positive integer a′.

Then the equation becomes 2 · 2na′n + 3 · 2nb′n = 4cn or 2 · 2n−2a′n + 3 · 2n−2b′n = cn.

Since n ≥ 3, the left-hand side is even. So, the right-hand side is also even.

Hence, we must have c is even. Say c = 2c′ for some positive integer c′.

But then we have 2 · 2na′n + 3 · 2nb′n = 4 · 2nc′n which implies 2a′n + 3b′n = 4c′n.

This yields positive integer solutions a′, b′, c′ to the same equation but with a smaller c′.

This contradicts the minimality of c. Hence, there cannot be any positive integer solution to 2an+3bn =
4cn when n ≥ 3.

7. (2013 A2) Let S be the set of non-perfect squares. For n ∈ S, consider choices of integers n < a1 <
a2 < . . . < ar such that n · a1 · a2 · · · ar is a perfect square, and let f(n) be the minimum of ar over all
such choices. (e.g., 2 · 3 · 6 = 62 and f(2) = 6.) Show that f : S → Z is one-to-one.

We will prove by contradiction.

Suppose for two non-perfect squares m and n we have f(m) = f(n). Without loss of generality, say
m < n.

Say m · a1 · a2 · · · ar = f(m) is a perfect square with m < a1 < a2 < . . . < ar and ar minimum.

Say n · b1 · b2 · · · bs = f(n) is a perfect square with n < b1 < b2 < . . . < bs and bs minimum.

Multiply the above two lists together, we get m · a1 · a2 · · · ar · n · b1 · b2 · · · bs which is also a perfect



square as it is the product of two perfect squares.

Now, we can remove any repeated terms among a1, a2, . . . , ar, n, b1, b2, . . . , bs (with ar = bs being re-
moved at least).

The resulting product m · · · · is still a perfect square with the largest term less than ar as ar and bs are
removed already.

So, we just found a perfect square product m · · · · with a smaller largest term than that of the perfect
square product m · a1 · a2 · · · ar.

This contradicts the minimality of ar.

Therefore, we cannot have f(m) = f(n) for any two distinct non-perfect squares m,n, and the function
f must be one-to-one.


