Putnam practice - Number theory problem solutions

1. True or false: If p > 5 is a prime number, then 24 divides p? — 1 without remainder.
True.
First note that p? — 1 can be factored as (p — 1)(p + 1).

Observe that one of any three consecutive integers p — 1, p, p+ 1 must be divisible by 3. However, since
p > 5 is a prime, p cannot be divisible by 3. Hence, 3 divides one of p — 1 or p + 1, and their product.

Next, observe that one of any four consecutive integers p — 1,p,p + 1,p + 2 must be divisible by 4.
However, since p > 5 is prime, p cannot be even and, hence, p + 2 cannot be even.

Therefore, 4 divides one of p—1 or p+ 1. Then the remaining one is also an even number and is divisible
by 2. Hence, 4 -2 = 8 divides (p — 1)(p + 1).

Combining everything together, we have 3-8 = 24 divides (p — 1)(p+ 1) = p? — 1.

2. Show that there are no integers a, b, and ¢ such that a® 4+ b*> — 8¢ = 6.
The equation is the same as a? + b*> = 8¢ + 6.
Now, we try to study perfect squares 22 (mod 8).

By division algorithm, any integer x has remainder 0,1,2,3,4,5,6 or 7 when divided by 8. (i.e., x =
0,1,2,3,4,5,6,7 (mod 8).)

One can verify that z? = 0%,12,22,32,42,52,62,72 =0,1,4,1,0,1,4,1 (mod 8).
So, any perfect square 22 = 0,1 or 4 (mod 8).

Consequently, a® +b>=0+0,0+1,0+4,14+0,14+1,1+4,4+ 0,4+ 1 or 4+ 4 (mod 8) but none of
these is = 6 (mod 8).

Therefore, there is no integer solution to a? 4+ b*> = 8¢ + 6.

3. (2003 A1) Let n be a fixed positive integer. How many ways are there to write n as a sum of positive
integers n = a1 + ag + - - - + ap with k positive and a1 < a9 < -+ <ap <ap+17

One can inspect small cases first and see a pattern.

1 = 1. There is only 1 way.

2=2or 2=1+41. There are 2 ways.

3=3,3=1+2,or3=1+1+41. There are 3 ways.

In general, one suspects that there are n ways to write n in the required form.
Asa; > 1, wehaven=ay1+as+---+ap>1+14+---+1=k>1.

Claim: For each length 1 < k < n, there is one and only one way to write n = a; + as + - - - ag with
ap <az<---<ap<a +1

Proof:

Since a1 < ag < -+ < ag < aj + 1, a certain number of the a;’s are a; while the rest (which could be
none) are aj + 1.



Suppose a; =ag =--- =as and agy; = --- = a = a1 + 1 for some 1 < s < k. (When s = k, then none
of the a;’s equal to a; + 1.)

Then n = sa; + (k — s)(a1 + 1) = kay + (k — s). Note that 0 < k — s < k.

For each length 1 < k < n of the sum n = a; + a2+ - - - + ai, we know that n = k- ¢+ r for some unique
quotient ¢ and remainder 0 < r < k by division algorithm.

Hence, we can represent n asn =q+q+---+q+(q+1)+---+(¢g+1). (ie., there is at least one

v
s times k—s times

way to do it.)

Moreover, by the uniqueness of division algorithm, the equation n = kaj + (k — s) = kq + r has only
one solution for a; and k — s (i.e., s) for each fixed k.

Therefore, the claim is true and there are exactly n ways to do it.

4. (2014 A1) Prove that every non-zero coefficient of the Taylor series of (1 — x + x2)e” about x = 0 is
a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Recall the Taylor series for e® = 7% /27

n=0 n!
Then the Taylor series for (1 — x 4 22)e® = e — we® + 227 is
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after re-indexing and some algebra. Clearly, the constant term has numerator 1.

Case 1: If n — 1 is a prime number, then the coefficient i is in lowest term already as n — 1 is not

-1
n- (n 2)!
divisible by n —2,n — 3,...,2; and ged(n — 1,n) = 1 since any common divisor of n — 1 and n must
divide their difference which is 1. In this case, the numerator n — 1 is a prime number.
Case 2: If n — 1 is a composite number, then n — 1 = a - b for some 1 < a,b<n — 1.

Subcase 1: If a # b, say 1 < a < b < n— 1. Then both a and b appears somewhere in (n — 2)! =

(n—=2)---b---a---1. So, the coefficient n.("n__IQ)! = n-(n—Q)C%?bmaml can be reduced to % which has
numerator 1.
Subcase 2: If a = b, then n — 1 = a®. Then the coefficient n.(”nf_lm! = n-(n—2)fl--22a--~a---1 can be reduced to

% which has numerator 1 if 2a <n — 2 = a? — 1.

We know that (a — 1)2 > 22 > 2 when a > 3. Hence, a® — 2a 4 1 > 2 which implies a®? — 1 > 2a. Thus,
subcase 2 above is okay when a > 3.

It remains to deal with the special case when a = 2. Then n — 1 = 22 gives n = 5. The coefficient for

x° is E (55 12) E);Lﬁ = 1% whose numerator 2 is a prime number. And we are okay in this situation as
well.

5. (2005 A1) Show that every positive integer is a sum of one or more numbers of the form 2"3* where
r and s are non-negative integers and no summand divides another.



For any positive even integer n, we can factor out the highest power of 2 that goes into it, say 2¥. Then
55 = m is a positive odd integer.

Now, if we can represent m as a sum of one or more numbers of the form 2"3° where r and s are
non-negative integers and no summand divides another, then we can represent n as a sum of one or
more numbers of the form 271¥3% where r and s are non-negative integers and no summand divides
another.

Therefore, we can focus on positive odd integers only and we will prove the statement by strong induc-
tion.

Base step: n = 1. Clearly, we can write 1 = 203°.

Induction step: Suppose the statement is true for n = 1,3,5,---2a — 1 for some integer a > 1.
Then we want to prove that the statement is true for n =1,3,5,---2a —1,2(a+1) = 1 =2a + 1.
By induction hypothesis, the statement is true for n =1,3,5,---2a — 1.

It remains to show that the statement is true for n = 2a + 1.

Subtract the highest power of 3 that is less than or equal to 2a + 1, we get m = 2a + 1 — 3%,
Note that 3! < 2a + 1 < 3" and, hence, m =2a +1 -3 <3+ -3 =3.31 -3l =2.3.

If m = 0, then we are done as 2a + 1 = 3! = 203,

If m > 0, then 2a + 1 — 3! is a positive even integer as 2a + 1 and 3! are odd integers.

2a+1-3!

Hence, by factoring out the highest power of 2 in it, we have =3

= b is a positive odd integer.
Clearly, b < W:a—1<2a—l.

By induction hypothesis, we can write b as a sum of one or more numbers of the form 2"3° where r and
s are non-negative integers and no summand divides another.

Hence, we can write m = 2a + 1 — 3! as a sum of one or more numbers of the form 2"7*3% where r and
s are non-negative integers and no summand divides another.

As m < 23!, all the exponents s in 3° must be less that [ for otherwise 277%3% > 213! > m,.
Since all the s’s are less than I, none of the summand 273 is divisible by 3'.
Also, since each of the summand 2"1*3° has a factor of 2 in it, none of them cannot divide 3'.

Therefore, 2a 4+ 1 = 3! + 3. 2"+%3% is a sum of the required form with no summand dividing another.
This finishes the induction step.

6. (2024 Al) Determine all positive integers n for which there exist positive integers a,b, ¢ such that
2a™ 4+ 3b™ = 4c™.

Answer: n = 1.

I will let you spot some positive integer solutions for 2a' + 3b! = 4c!.

We will prove that 2a™ + 3b™ = 4¢™ has no positive integer solution when n > 2.

When n = 2, the equation becomes 2a? + 3b? = 4¢2. Suppose a, b, ¢ is a solution with ¢ smallest.

One can check that 22 = 0,1 (mod 3). Hence, the above equation leads to 2a? = 4¢? = ¢? (mod 3).



For this to be true, we cannot have a? =1 (mod 3) as 2-1 = ¢? (mod 3) is impossible.

Therefore, we must have a®> = 0 (mod 3) which implies @ =0 (mod 3).

Then, this implies 2- 0 = ¢? (mod 3). Hence ¢ =0 (mod 3).

Thus, a = 3a’ and ¢ = 3¢ for some positive integers a’, .

Then 2(3a’)? + 3b? = 4(3¢/)?. This implies 18a + 3b* = 36¢/? or b? = 12¢? — 64 = 3(4c? — 2a').
In particular 3 divides b? which implies 3 divides b. Thus, b = 3b' for some positive integer ¥'.

But then, we have 2(3a’)? + 3(3V')? = 4(3¢')2.

This gives 2a’? 4 3b'? = 4¢/? yielding a solution a’, ', ¢ with a smaller ¢

This contradicts the minimality of ¢. Hence, there cannot be any positive integer solution to 2a? + 3b* =
4¢2.

When n > 3, we will do a similar but with (mod 2) instead of (mod 3).

Suppose 2a™ 4+ 3b"™ = 4¢™ has some positive integer solution a, b, ¢ with ¢ being smallest.
Then 3b™ = 4c™ — 2a"™.

Since the right-hand side is even, the left-hand side is also even.

Hence, we must have b is even. Say b = 2’ for some positive integer .

Then the equation becomes 2a™ + 3 - 2™ = 4¢” or a” = 2¢" — 3 - 2"~ 1y,

Since the right-hand side is even, the left-hand side is also even.

Hence, we must have a is even. Say a = 2a’ for some positive integer a’.

Then the equation becomes 2 - 2%a/™ + 3 - 2" = 4¢™ or 2- 2" 2a/™ + 3 - 2" 2™ = (™.
Since n > 3, the left-hand side is even. So, the right-hand side is also even.

Hence, we must have c is even. Say ¢ = 2¢ for some positive integer ¢'.

But then we have 2 - 2"a/™ + 3 - 2" = 4 - 2"¢™ which implies 2a™ + 30" = 4c™.

This yields positive integer solutions a’, b, ¢’ to the same equation but with a smaller ¢’.

This contradicts the minimality of c. Hence, there cannot be any positive integer solution to 2a™ + 30" =
4¢™ when n > 3.

7. (2013 A2) Let S be the set of non-perfect squares. For n € S, consider choices of integers n < a; <
az < ... < a, such that n-aj - ay---a, is a perfect square, and let f(n) be the minimum of a, over all
such choices. (e.g., 2-3-6 = 62 and f(2) = 6.) Show that f : S — Z is one-to-one.

We will prove by contradiction.

Suppose for two non-perfect squares m and n we have f(m) = f(n). Without loss of generality, say
m < n.

Say m-ay-ag---a, = f(m) is a perfect square with m < a; < as < ... < a, and a, minimum.
Say n-by-be---bs = f(n) is a perfect square with n < b; < b < ... < bs and bg minimum.

Multiply the above two lists together, we get m - aq -ag---a, -n-by - by---bs which is also a perfect



square as it is the product of two perfect squares.

Now, we can remove any repeated terms among ai,ag,...,a,,n,b1,ba,...,bs (with a, = bs being re-
moved at least).

The resulting product m - - - - is still a perfect square with the largest term less than a, as a, and b, are
removed already.

So, we just found a perfect square product m - --- with a smaller largest term than that of the perfect
square product m-aj - as---a,.

This contradicts the minimality of a,..

Therefore, we cannot have f(m) = f(n) for any two distinct non-perfect squares m, n, and the function
f must be one-to-one.



