Publications

My research interests are in Complex Analysis, especially Geometric Function Theory (extensions of the notion of convex/starlike maps and properties of such maps).

You can download a publication list with references here and a list of selected abstracts here.

PUBLICATION LIST

Books
I.          M. N. Pascu, N. R. Pascu, “Problems and Solutions in Complex Analysis”, Transilvania University Press, 2011. ISBN 978 – 973 – 598 – 924 – 8.

Articles

[1].    N. R. Pascu, M. N. Pascu, An univalence criterion for analytic functions defined in type  convex domains, Complex Analysis and Operator Theory  , (2017) DOI 10.1007/s11785-017-0692-2 pp. 1-7 IF 0.663

[2].    N. R. Pascu, M. N. Pascu, Convexity constant of a domain and applications, Journal of Mathematical Analysis and Applications JMAA-16-2601, 449, No. 1, (2017), Pp. 793–807.  IF 1.135

[3].    R. Kargar, N. R. Pascu, A. Ebadian, Locally univalent approximations of analytic functions Journal of Mathematical Analysis and Applications  (2017), , https://doi.org/10.1016/j.jmaa.2017.04.054). IF 1.135

[4].    L. Beznea, M. N. Pascu, N. R. Pascu, Connections between the Dirichlet and the Neumann problem for continuous and integrable boundary data, Proceedings Conference Rodrigo Banuelos (accepted, to appear in Progress in Probability Springer International Publishing AG (2017), Birkhauser).

[5].    L. Beznea, M. N. Pascu, N. R. Pascu, An Equivalence Between the Dirichlet and the Neumann Problem for the Laplace Operator, Potential Anal. 44 (2016), No. 4, pp. 655 – 672. IF 0.956

[6].    M. N. Pascu, N. R. Pascu, N. Stoian, Brownian Probabilities under symmetric rearrangement, Bull. Transilvania Univ. of Brasov Ser. III, 8(57) (2015), No. 2, pp. 89 –  92.

[7].    M. N. Pascu, N. R. Pascu, Convex approximations of analytic functions, Appl. Math. Comput.  232 (2014), pp. 559 –  567. MR3181294 IF 1.702

[8].    M. N. Pascu, N. R. Pascu, O. Rachieru, An asymptotic formula for the semimartingale local time of reflecting Brownian motion on an interval, Bull. Transilvania Univ. of Brasov Ser. III, 7(56) (2014), No. 1, pp. 47 –  56. MR3234143

[9].    M. N. Pascu, N. R. Pascu, M. I. Pop, A simple proof of the Gaussian lower bound for the Neumann heat kernel of convex domains, Bull. Transilvania Univ. of Brasov Ser. III, 6(55) (2013), No. 2, pp. 17 –  22. MR3161080

[10]. M. N. Pascu, N. R. Pascu, A Strong Law of Large number for a probabilistic cash flow model, Bull. Transilvania Univ. of Brasov Ser. III, 5(54) (2012), No. 2, pp. 49 –  56. MR3035855

[11]. M. N. Pascu, N. R. Pascu, Starlike approximations of analytic functions, Appl. Math. Comput. 218 (2012), No. 12, pp. 6825 – 6832. MR2880338 IF 1.702

[12]. M. N. Pascu, N. R. Pascu, A note on the sticky Brownian motion on R, Bull. Transilv. Univ. Brasov Ser. III, 4(53) (2011), No. 2, pp. 57 –  62. MR2926619

[13]. M. N. Pascu, N. R. Pascu, Neighborhoods of univalent functions, Bull. Aust. Math. Soc. 83 (2011), No. 2, pp. 210 – 219. MR2784778

[14]. M. N. Pascu, N. R. Pascu, A closer look at the solution of a degenerate stochastic differential equation. Bull. Transilv. Univ. Brasov Ser. III  4 (53) (2011), No. 1, pp. 59 – 66. MR2995811

[15]. M. E. Gageonea, M. N. Pascu, N. R. Pascu, M. N. Pascu, A Schwarz lemma for non–analytic functions defined in the unit disk, Mathematica (Cluj) 53(76) (2011), No. 1, pp. 45 – 50. MR2840628

[16]. N. R. Pascu, M. N. Pascu , Injectivity criteria for C1 functions defined in non-convex domains, Studia Univ. Babes-Bolyai LV (2010), No. 3, pp. 179 – 186. MR2764262

[17]. N. R. Pascu, On a Theorem of Picard and Applications, Bull. Transilv. Univ. Brasov Ser. III  3 (52) (2010), pp. 77 – 80. MR2841723

[18]. N. R. Pascu, M. N. Pascu, Some extensions of Schwarz lemma for analytic functions defined in angular regions, Proc. of the Sixth Congress of Romanian Mathematicians, Romanian Academy Publishing House, 2009, pp. 189 – 196. ISBN 978-973-27-1780-6. Zbl 1166.00017  MR2641565

[19]. M. N. Pascu, N. R. Pascu, Domain convergence of reflecting Brownian motion, Proc. of the Sixth Congress of Romanian Mathematicians, Romanian Academy Publishing House,  2009, pp. 185 – 189. ISBN 978-973-27-1780—6. Zbl 1166.00017 MR2641564

[20]. N. R. Pascu, Univalence criteria for analytic functions defined in non-convex domains, International Conference on Complex Analysis and Related Topics – XI thRomanian–Finnish Seminar, Alba Iulia, Romania, August 14 - 19, 2008, (in the Proceedings of the Romanian Academy, Romanian Academy Publishing House).

[21]. M. N. Pascu, N. R. Pascu, Brownian Motion on the Circle and Applications, Bull. Transilv. Univ. Brasov Ser. III 15 (50) (2008), pp. 469 – 478. MR2478047

[22]. M. E. Gageonea, S. Owa, N. R. Pascu, M. N. Pascu, A maximum modulus principle for non– analytic functions defined in the unit disk, Appl. Math. Comput. 187 (2007), No. 1, pp. 163 – 169. MR2323565 IF 1.702

[23]. M. N. Pascu, N. R. Pascu, Monotonicity properties of reflecting Brownian motion, Proc. 21st  Scientific Session on “Mathematics and its Applications”, Transilvania University Press, 2007, pp. 109 – 112.

[24]. M. N. Pascu, N. R. Pascu, Domain convergence of reflecting Brownian motion, Proc. of the International Symposium on “Geometric Function Theory and Applications”, TC Istanbul Kultur University, August 20 – 24 , 2007, pp. 71–77,  ISBN: 978-6957-42-9.

[25]. M. E. Gageonea, N. R. Pascu, M. N. Pascu, A maximum modulus principle for a class of non–analytic functions defined in the unit disk, Mathematica 49(72) (2007), No. 2, pp. 169 – 174. MR2431144 Zbl05530442

[26]. M. N. Pascu, M. Gageonea, N. R. Pascu, On Schwarz Lemma, Proc. 20th Scientific Session on “Mathematics and its Applications”, Transilvania University Press, 2006, pp.103 – 108. ISBN 973–635–854–2

[27]. M. N. Pascu, N. R. Pascu, Some extensions of the Schwarz Lemma, Proc.  Of the International Symposium on “Complex Function Theory and Applications”, Brasov, September 1 – 5, 2006, Transilvania University Press, 2006, pp. 93 – 102. ISBN 973–635–827–5

[28]. N. R. Pascu, Convex functions in a Half–Plane II, J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Paper No. 125. MR2178306

[29]. M. E. Gageonea, M. N. Pascu, N. R. Pascu, A monotonicity property for the transition density of reflecting Brownian motion, Proc. 19th  Scientific Session on “Mathematics and its Applications”, Transilvania University Press, 2005, pp. 47 – 52. ISBN 973-635-605-1.

[30]. D. Raducanu, I. Radomir, M. E. Gageonea, N. R. Pascu, A Generalization of Ozaki– Nunokawa’s Univalence Criterion, J. Inequal. Pure Appl. Math., 5 (2004), No. 4, Paper No. 95. MR2112448

[31]. M. E. Gageonea, N. R. Pascu, An univalence criterion for analytic functions in the unit disk, Proc. 18th Scientific Session on “Mathematics and its Applications”, Transilvania University Press, 2004, pp. 61 –  66.

[32]. M. E. Gageonea, N. R. Pascu, On an integral operator, Proc. 18th Scientific Session on “Mathematics and its Applications”, Faculty Mathematics and Computer Science,  Transilvania University Press, 2004, pp. 67 – 72.

[33]. M. E. Gageonea, N. R. Pascu, On a class of univalent functions in half–plane, Proc. 17th Scientific Session on “Mathematics and its Applications”, Faculty Mathematics and Computer Science, Transilvania University Press, 2003, pp. 111 – 113.

[34]. N. N. Pascu, N. R. Pascu, Convex functions in a half–plane, J. Inequal. Pure Appl. Math. 4 (2003), No.5, Paper No. 102. Zbl 1127.30303 MR2048605

[35]. D. Blezu, N.N. Pascu, N. R. Pascu, Integral operator which preserves the univalence in the upper half–plane, Demonstr. Math. 36 (2003), No.1, pp. 77 – 81. MR1968490, Zbl 1023.30021

[36]. S. Moldoveanu, N. N. Pascu, N. R. Pascu, On the univalence of an integral operator, Mathematica (Cluj) 43(66) (2001), No. 1, pp. 113 – 116. MR2017139

[37]. N. N. Pascu, D. Raducanu, M. N. Pascu, N. R. Pascu, On convex functions in an elliptical domain, Studia Univ. Babes-Bolyai 46 (2001), No. 2, pp. 97 – 100. Zbl 1027.30037 MR1954258

[38]. D. Blezu, N. R. Pascu, Univalence criteria for integral operators, Glas. Mat. Ser III 36 (56) (2001), No.2, pp. 241–245. MR1884445, Zbl 1005.30018

[39]. N. N. Pascu, I. Radomir, N. R. Pascu, Convex functions in a half–plane, Proc. Of the International Conference on “Complex Analysis and Related Topics”, the IXth Romanian–Finnish Seminar, August 27–31, 2001, “Transilvania” University of Brasov, Romania.

[40]. N. N. Pascu, N. R. Pascu, Convex functions in a half–plane I, Gen. Math. 8 (2000), No. 1–2, pp. 3 – 9. MR1933067

[41]. N. N. Pascu, D. Raducanu, N. R. Pascu, M. N. Pascu, Alpha–spiral functions in an elliptical domain, Filomat 14 (2000),  pp. 9 – 12. Zbl 1035.30013, MR1953989

[42]. N. N. Pascu, D. Raducanu, N. R. Pascu, M. N. Pascu, Starlike functions in an elliptical domain, Libertas Math. 20 (2000), pp. 63–65. MR1801114, Zbl 0978.30006

[43]. N. R. Pascu, On a class of convex functions in a half–plane, Gen. Math. 8 (2000), No. 1 – 2, pp. 65 – 73. MR1933072

[44]. D. Blezu, N. R. Pascu, Distortion theorems for classes of univalent functions, Proc. of the 2nd International Conference on “Symmetry and Asymmetry in Mathematics, Formal Languages and Computer Science”, Satellite Conference of 3ECM, Brasov, Romania, June 29–July 1, 2000, pp. 89 – 93. ISBN 973–9474–69–1 Zbl 0990.30009

[45].  H. Ovesea, I. Radomir, N. R. Pascu A sufficient condition for univalency, Gen. Math. 4 (1996), No. 3, pp. 87 – 97. Zbl 1052.30501 N. R. Pascu, An improvement of Sheil–Small's result, Gen. Math. 2 (1994), No. 3, pp. 133 – 138. Zbl 0879.30007

[46]. H. Ovesea, M. N. Pascu, N. R. Pascu, A generalization of the univalence criteria of Nehari, of Ahlfors and Becker and of Lewandowski, Gen. Math. 1 (1993), No.1, pp. 3 – 10. Zbl 0801.30016

[47]. H. Ovesea, M. N. Pascu, N. R. Pascu, On a sufficient condition for univalence with respect to symmetric points, Proc. Semin. of Geometric Function Theory, Brasov, Romania, “Transilvania” University of Brasov, Fac. Sci., Res. Semin. 3 (1993), pp. 71 – 73. Zbl 0790.30011 MR1287435

[48]. H. Ovesea, M. N. Pascu, N. R. Pascu, On a sufficient condition for univalence, Proc. Semin. of Geometric Function Theory, Brasov, Romania, “Transilvania” University of Brasov, Fac. Sci., Res. Semin. 2 (1991), pp. 67 – 71. Zbl 0749.30007 MR1145516

Preprints
[49]. M. N. Pascu, N. R. Pascu, Iterated harmonic measure (in progress).

[50]. M. N. Pascu, N. R. Pascu, F. Tripşa, An improved Bernstein-type operator, (submitted, under review).

©