1. E. Stachura, N. Wellander, and E. Cherkaev. Quantitative analysis of Passive Intermodulation and surface roughness. Studies in Applied Mathematics, 2024, pp. 1-44. 
  2. D. R. Adhikari and E. Stachura, Eigenvalue problems for p-div-curl systems.  Journal of Mathematical Analysis and Applications, 526, 127327, 2023. 
  3. E. Stachura, Acoustic wave propagation in anisotropic media with applications to piezoelectric materials. Applicable Analysis, 101(3), pp. 994--1010, 2022. 
  4. E. Stachura and N. Wellander, Quantitative Trace Estimates for the Maxwell system in Lipschitz domains. Mathematical Methods in the Applied Sciences, 44 (13), pp. 10635-10652, 2021. 
  5. C. Mayer and E. Stachura, Traveling Wave Solutions for a Cancer Stem Cell Invasion Model of Melanoma. Discrete and Continuous Dynamical Systems Series B, 26 (9), pp. 5067--5093, 2021
  6. D. R. Adhikari, T. M. Asfaw, and E. Stachura, A topological degree theory for perturbed AG(S+) operators and applications to nonlinear problems. Journal of Mathematical Analysis and Applications, 497 (2), 124912, 2021.
  7. D. R. Adhikari and E. Stachura, A general p-curl system and duality mappings on Sobolev spaces for the Maxwell equations. Electron. J. Differential Equations, Vol. 2020 (2020), No. 116, pp. 1-22. 
  8. A. Benyi, J. M. Martell, K. Moen, E. Stachura, and R. Torres, Boundedness results for commutators with BMO functions via weighted estimates: a comprehensive approach. Mathematische Annalen, 376 (1), 61-102, 2020.
  9. E. Stachura, Existence of Propagators for time dependent Coulomb-like PotentialsRocky Mountain Journal of Mathematics, Vol. 49 (7), 2347-2374, 2019. 
  10. A. Hunter and E. Stachura, A quantitative method for choosing optimal Daubechies wavelets. Advances in Inequalities and Applications, Vol. 2018, 12: 2018.
  11. C. E. Gutierrez, L. Pallucchini, and E. Stachura, General Refraction Problems with Phase Discontinuity on non flat Metasurfaces. Journal of the Optical Society of America A, Vol. 34(7): 1160-1172, 2017.
  12. E. Stachura, Existence of Weak Solutions to Refraction Problems in Negative Refractive Index Materials. Nonlinear Analysis, Vol. 157, 76-103, 2017.
  13. E. Stachura, The Time Dependent Maxwell System with Measurable Coefficients in Lipschitz Domains. Journal of Mathematical Analysis and Applications, Vol. 452 (2), 941-956, 2017.
  14. C. E. Gutierrez and E. Stachura, Metamaterial Lens Design. Journal of the Optical Society of America A, Vol. 33(10), 2020-2026, 2016.
  15. E. Stachura, On Generalized Solutions to Some Problems in Electromagnetism and Geometric Optics. Ph.D Thesis, 2016.
  16. C. E. Gutierrez and E. Stachura, Uniform Refraction in Negative Refractive Index Materials. Journal of the Optical Society of America A, Vol. 32(11), pp. 2110-2122, 2015.
  17. I. Mitrea, K. Ott, and E. Stachura, Spectral Properties of the Reflection Operator in Two Dimensions. Contemporary Mathematics, Vol. 581, pp. 199-215, 2012.


Mathematical Modeling Scenarios

  1. E. Stachura and T. Lozano (2019), "3-061-S-ChemEng,"
  2. R. Krueger and E. Stachura (2019), "10-001-S-TilingHallway,"
  3. E. Stachura (2019), "9-010-S-TravelingWaves,"
  4. E. Stachura (2019), "9-005-S-InvasiveSpeciesModel,"
  5. E. Stachura and R. Krueger (2018), "6-024-S-DronePackageDelivery",



  1. C. E. Gerber, R. Horisberger, and E. Stachura, General Purpose Silicon Trigger Board for the CMS Pixel Read Out ChipsJournal of Undergraduate Research at the University of Illinois at Chicago, 4.1, 2010.