Publications
Refereed Journal Articles
*Student authors are marked by an asterisk.
[45] J. Gutierrez-Cardenas*, B. D. Gibbas*, K. Whitaker*, M. Kaledin, A. L. Kaledin,
A Low Order Permutationally Invariant Polynomial Approach to Learning Potential Energy
Surfaces using the Bond-order Charge-density Matrix: Application to Cn Clusters for n = 3 – 10, 20.
J. Phys. Chem. A (2024) https://doi.org/10.1021/acs.jpca.4c04281
[44] B.D. Gibbas*, M. Kaledin, A.L. Kaledin, Quantum Monte Carlo Simulations of the
Vibrational Wavefunction of the Aromatic Cyclo[10]carbon Using a Full Dimensional
Permutationally Invariant Potential Energy Surface.
J. Phys. Chem. Lett. 15 (2024) 5070-5075. https://doi.org/10.1021/acs.jpclett.4c00893
[43] Y. Hashem*, K. Foust*, M. Kaledin, A. L. Kaledin, Fitting potential energy surfaces
by learning the charge density matrix with permutationally invariant polynomials.
J. Chem. Theory Comput. 19 (2023) 5690-5700. https://doi.org/10.1021/acs.jctc.3c00586 .
[42] S. A. Kudratov*, M. Kaledin, A. L. Kaledin, Revisiting the N(N+1)/2-site s-type
Gaussian charge model for permutationally invariant polynomial fitting of molecular
tensor properties.
Int. J. Quant. Chem. 123 (2023) e27102. https://doi.org/10.1002/qua.27102 .
[41] O. Omodemi*, R. Revennaugh*, J. Riley*, A. L. Kaledin, M. Kaledin
A Fermi resonance and a parallel-proton-transfer overtone in the Raman spectrum of
linear centrosymmetric N4H+: A polarizability-driven first principles molecular dynamics
study.
J. Chem. Phys. 157 (2022) 154303 (10 pages) https://doi.org/10.1063/5.0119251
[40] O. Omodemi*, M. Kaledin, A. L. Kaledin
Permutationally Invariant Polynomial Representation of Polarizability Tensor Surfaces
for Linear Regression Analysis.
J. Comput. Chem. 43 (2022) 1495-1503.
https://doi.org/10.1002/jcc.26952
[39] D. Boutwell*, D. Pierre-Jacques*, O. Cochran*, J. Dyke*, D. Salazar*, C. Tyler*,
M. Kaledin
Intramolecular Proton Transfer in the Hydrogen Oxalate Anion and the Cooperativity
Effects of the Low-Frequency Vibrations: A Driven Molecular Dynamics Study. J. Phys.
Chem. A 126 (2022) 583-592. https://doi.org/10.1021/acs.jpca.1c09686
[38] O. Omodemi*, S. Sprouse*, D. Herbert*, M. Kaledin, A. L. Kaledin
On the Cartesian representation of the molecular polarizability tensor surface by
polynomial fitting to ab initio data. J. Chem. Theory Comput. 18 (2022) 37-45,
https://doi.org/10.1021/acs.jctc.1c01015
[37] D. Pierre-Jacques*, C. Tyler*, J. Dyke*, A. L. Kaledin, M. Kaledin
A Polarizability driven ab initio molecular dynamics approach to stimulating Raman
activity: Application to C20. Mol. Phys. 119 (2021) e1939453:1-9,
https://doi.org/10.1080/00268976.2021.1939453
[36] D. Boutwell*, O. Okere*, O. Omodemi*, A. Toledo*, A. Barrios*, M. Olocha*, M. Kaledin, Analysis of the Proton Transfer Bands in the Infrared Spectra of Linear N2H+…OC and N2D+…OC Complexes Using Electric Field-Driven Classical Trajectories: J. Phys. Chem. A 124 (2020) 7549-7558, https://pubs.acs.org/doi/10.1021/acs.jpca.0c06756 .
[35] R. Hooper*, D. Boutwell*, M. Kaledin, Assignment of Infrared-Active Combination Bands in the Vibrational Spectra of Protonated Molecular Clusters Using Driven ClassicalTrajectories: Application to N4H+ and N4D+: J. Phys. Chem. A 123 (2019) 5613-5620, https://pubs.acs.org/doi/abs/10.1021/acs.jpca.9b04480 .
[34] T. Esser, H. Knorke, K.R. Asmis, W. Schollkopf, Q. Yu, C. Qu, J.M. Bowman, M. Kaledin, Deconstructing prominent bands in the terahertz spectra of H7O3+ and H9O4+: Intermolecular modes in Eigen clusters, J. Phys. Chem. Lett. 9 (2018) 798-803, https://pubs.acs.org/doi/10.1021/acs.jpclett.7b03395 .
[33] M. Kaledin, D. T. Adedeji*, Driven Molecular Dynamics Studies of the Shared Proton Motion in the H5O2+·Ar Cluster: The Effect of Argon Tagging and Deuteration on Vibrational Spectra; J. Phys. Chem. A 119 (2015) 1875−1884, https://pubs.acs.org/doi/10.1021/jp511305c .
[32] M.Tuttle*, M. Kaledin, Assessment of the Density-Functional Tight-Binding (DFTB) Method for describing the Structure and interaction Energies of Hydrated Ions; Georgia Journal of Science, 70 (2012) 48-49.
[31] M. Kaledin, C. A. Wood*: Ab initio Studies of Structural and Vibrational Properties of Protonated Water Cluster H7O3+ and Its Deuterium Isotopologues: An Application of Driven Molecular Dynamics. J. Chem. Theory Comput. 6 (2010) 2525-2535, https://pubs.acs.org/doi/10.1021/ct100122s .
[30] M. Kaledin, A. L. Kaledin, J. M. Bowman, J. Dong, K. D. Jordan: Calculation of the Vibrational Spectra of H5O2+ and its Deuterium-substituted Isotopologues by Molecular Dynamics Simulations. J. Phys. Chem. A 113 (2009) 7671-7677, https://pubs.acs.org/doi/10.1021/jp900737r .
[29] M. Kaledin, J. M. Moffitt*, C. R. Clark*, F. Rizvi*: Ab initio molecular dynamics simulations of the infrared spectra of H3O2- and D3O2-., J. Chem. Theory Comput. 5 (2009) 1328-1336, https://pubs.acs.org/doi/10.1021/ct8004485 .
[28] M. Kaledin, A. L. Kaledin, J. M. Bowman: Vibrational analysis of the H5O2+ infrared spectrum using Driven Molecular Dynamics, J. Phys. Chem A 110 (2006) 2933-2939, https://pubs.acs.org/doi/full/10.1021/jp054374w?src=recsys
[27] A. L. Kaledin, M. Kaledin, J. M. Bowman: All-Atom Calculation of the Normal Modes of Bacteriorhodopsin Using a Sliding Block Iterative Diagonalization Method, J. Chem. Theory Comput. 2 (2006) 166-174.
[26] M. Kaledin, A. Brown, J. M. Bowman: Normal mode analysis using the driven molecular dynamics method. II. An application to biological macromolecules. J. Chem. Phys. 121 (2004) 5646-5652.
[25] S.F. Deppe, U. Wachsmuth, B. Abel, M. Bittererova, S.Y. Grebenschikov, R. Siebert, R. Schinke: Resonance spectrum and dissociation dynamics of ozone in the 3B2 electronically excited state: Experiment and theory. J. Chem. Phys. 121 (2004) 5191-5200.
[24] V. Lukes, M. Bittererova, S. Biskupic, V. Laurinc: Nature of interaction energy anisotropy in Li-HF van der Waals complex. The theoretical study. Theor. Chem. Acc. 109 (2003) 316-325.
[23] R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, S.C.M. Farantos: The vibrational energies of ozone up to the dissociation threshold: Dynamics calculations on an accurate potential energy surf J. Chem. Phys. 116 (2002) 9749-9767.
[22] M. Bittererova, H. Ostmark, T. Brinck: A theoretical study of the azide (N3) doublet states. A new route to tetraazatetrahedrane (N4): N + N3 -> N4. J. Chem. Phys. 116 (2002) 9740-9748.
[21] M. Bittererova, H. Ostmark, T. Brinck: Ab initio study of the ground state and the first excited state of the rectangular (D2h) N4 molecule. Chem. Phys. Lett. 347 (2001) 220-228.
[20] M. Bittererova, T. Brinck, H. Ostmark: Theoretical Study of the Singlet Electronically Excited States of N4. Chem. Phys. Lett. 340 (2001) 597-603.
[19] R. Siebert, R. Schinke, M. Bittererova: Spectroscopy of ozone at the dissociation threshold: Quantum calculations of bound and resonance states on a new global potential energy surface. Phys. Chem. Chem. Phys. 3(2001) 1795-1798.
[18] R. Schinke, M. Bittererova: On the S1->S0 internal conversion in the photodissociation of HNCO: The role of the NC stretch as a promoting mode. Chem. Phys. Lett. 332 (2000) 611-616.
[17] M. Bittererova, T. Brinck, H. Ostmark: Theoretical study of the triplet N4 potential energy surfaces. J. Phys. Chem. A 104 (2000) 11999-12005.
[16] J. Micanko, S. Biskupic, M. Bittererova: Correlation, Relativistic and Adiabatic Corrections to the Ground State Potential Curve of the Hydrogen Molecule. Collection of Czech. Chem. Commun. 65 (2000) 1387-1393.
[15] M. Bittererova, J. M. Bowman, K. Peterson: Quantum scattering calculations of the O(1D)+HCl reaction using a new ab initio potential. J. Chem. Phys. 113 (2000) 6186-6196.
[14] V. Lukes, M. Bittererova, V. Laurinc, S. Biskupic: Ab initio study of the F2-H van der Waals complex. Chem. Phys. 257 (2000) 157-165.
[13] M. Bittererova, J.M. Bowman: A wavepacket calculation of the effect of reactant rotation and alignment on product branching in the O(1D)+HCl->ClO+H, OH+Cl reactions. Communication. J. Chem. Phys. 113 (2000) 1-3.
[12] M. Bittererova, S. Biskupic, H. Lischka, W. Jakubetz: The barrier topography of the H+F2 potential energy surface. Phys. Chem. Chem. Phys. 2 (2000) 513-521.
[11] J.J. Klossika, H. Flothmann, R. Schinke, M. Bittererova: On the S1 --> S0 internal conversion in the photodissociation of HNCO. Chem. Phys. Lett. 314 (1999) 182-188.
[10] S. Biskupic, J.Micanko, M. Bittererova, V. Kvasnicka: Systematic Generation of Relativistic Gaussian Basis Sets. Czech. J. Phys. 49 (1999) 1137-1143.
[9] M. Bittererova, S. Biskupic: Ab initio calculation of stationary points on the HF2 potential energy surface. Chem. Phys. Lett. 299 (1999)145-150. M. Bittererova, S. Biskupic: Ab initio calculation of stationary points on the HF2 potential energy surface. Chem. Phys. Lett. 301(1999) 205-205 (Errata).
[8] M. Breza, M. Bittererova: Renner Teller Vibronic Potential Constants for HCO. J. Mol. Struct. (Theochem) 423 (1998) 245-250.
[7] S. Biskupic, J. Micanko,M. Bittererova: Direct SCF methods on the Transputer Network. Models in Chemistry 133 (1996) 357-364.
[6] M. Bittererova, H. Lischka, S. Biskupic: Ab initio calculation of stationary points for the ground and the first excited states of HCO. Int. J. Quantum Chem. 55 (1995) 261-268.
[5] M. Bittererova, S. Biskupic, H. Lischka, V. Klimo: Ab initio study of the potential curves for CO, CH and OH. Collect. Czech. Chem. Commun. 59 (1994) 1241-1250.
[4] V. Klimo, M. Bittererova, S. Biskupic, J. Urban: Quasiclassical trajectory study of H+O2->OH+O at temperatures from 500 to 2000 K. Chem. Phys. 173 (1993) 367-375.
[3] V. Klimo, M. Bittererova, S. Biskupic, J. Urban, M. Micov: Temperature dependences in the O+OH->O2+H reaction. Quasiclassical trajectory calculation. Collect. Czech. Chem. Commun. 58 (1993) 234-243.
[2] S. Biskupic, M. Bittererova, V. Kvasnicka: A comparative study of different approximations in the coupled- cluster method. Chem. Phys. Lett. 191 (1992) 29-32.
[1] S. Biskupic, V. Kvasnicka, R. Klein, M. Bittererova: Quantum chemistry on the personal computer. Chem. Papers 44 (1990) 485-492.
Refereed Chapters in Books
[2] M. Kaledin, A. L. Kaledin, A. Brown, J. M. Bowman: Driven molecular dynamics for normal modes of biomolecules without the Hessian, and beyond. Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, Eds. Q. Cui, and I. Bahar, (CRC Press), 2006.
[1] T. Brinck, M. Bittererova, H. Ostmark: Electronic structure calculations as a tool in the quest for experimental verification of N4. Energetic materials: Initiation, Decomposition and Combustion, Ed. P. Politzer, Theoretical and Computational Chemistry Series, (Elsevier Science, Amsterdam, The Netherlands), 2003.